DE LA RECHERCHE À L'INDUSTRIE

Exclusive reactions as a nuclear manometer

www.cea.fr

EJC 2022 Hervé MOUTARDE

Sep. 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

OF LA RECEIVER & LINEST

Motivation.

Investigation of the energy-momentum structure of the nucleon.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up:

elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Manometer

A **manometer** is a device for measuring the pressure of gases and liquids.

🖉 Cambridge dictionary (2022)

OF LA RECARRENT À L'INDUSTR

Motivation.

Investigation of the energy-momentum structure of the nucleon.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Manometer

A **manometer** is a device for measuring the pressure of **gases** and liquids.

🛆 Cambridge dictionary (2022)

Several questions

A fluid picture of the nucleon?

OF LA RECARRENT À L'INDUSTR

Motivation.

Investigation of the energy-momentum structure of the nucleon.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

- Elastic scattering
- Interpretation
- Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Manometer A manometer is a device for measuring the pressure of gases and liquids.

🛆 Cambridge dictionary (2022)

Several questions

- A fluid picture of the nucleon?
- Internal pressure of the nucleon?

OF LA RECEIVER & LINEST

Motivation.

Investigation of the energy-momentum structure of the nucleon.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering Interpretation Nucleon charge radius

Summary

General ideas Extrapolation

Concepts and lectures

General outline

Manometer

adjust

III III IIII III

Do not

anything by yourself

A manometer is a device for measuring the pressure of gases and liquids.

🛆 Cambridge dictionary (2022)

Several questions

- A fluid picture of the nucleon?
- Internal pressure of the nucleon?
- Exclusive reactions as a measuring device?

OF LA RECARDLE À L'INDUSTI

Motivation.

Investigation of the energy-momentum structure of the nucleon.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering Interpretation Nucleon charge radius

Summary

General ideas Extrapolation

Concepts and lectures

General outline

Manometer

adjust

III III IIII III

Do not

anything by yourself

A manometer is a device for measuring the pressure of gases and liquids.

🛆 Cambridge dictionary (2022)

Several questions

- A fluid picture of the nucleon?
- Internal pressure of the nucleon?
- Exclusive reactions as a measuring device?

Can we talk about a **proton internal pressure** or other properties borrowed from fluid mechanics? H. Moutarde | EJC 2022 | 2 / 131

What is the proton internal pressure? Clarify the concept by association of ideas.

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

H. Moutarde | EJC 2022

2022 3 / 131

What is the proton internal pressure? Clarify the concept by association of ideas.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering Interpretation Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Keywords

- Fluid, gas
- Stress-energy

SPORE NOR

Tensor

H. Moutarde | EJC 2022 | 3 / 131

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

 Composite object with an electric charge spread over a spherical region.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

- Composite object with an electric charge spread over a spherical region.
- Quark model description: nonrelativistic bound state of 3 massive quarks.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

- Composite object with an electric charge spread over a spherical region.
- Quark model description: nonrelativistic bound state of 3 massive quarks.
- Modern description (QCD): relativistic bound state of colored light quarks and massless gluons (partons).

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering Interpretation Nucleon charge

Nucleon char radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

- Composite object with an electric charge spread over a spherical region.
- Quark model description: nonrelativistic bound state of 3 massive quarks.
- Modern description (QCD): relativistic bound state of colored light quarks and massless gluons (partons).

Electric charge radius \simeq 0.8 fm.

- Need for a **quantum relativistic** framework:
 - Uncertainty principle $\Delta p \simeq 350$ MeV.
 - Electric charge radius $\simeq 4 \times$ Compton wavelength.

H. Moutarde | EJC 2022 | 4 / 131

Elastic scattering. Kinematics and standard notations.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Kinematics of elastic scattering on the nucleon

H. Moutarde | EJC 2022 | 5 / 131

Elastic scattering.

Kinematics, standard notations and orders of magnitude.

Exclusive reactions as a nuclear manometer

Kinematics of elastic scattering on the nucleon

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Exercise 0.1

Give the typical energy range to probe the nucleon structure with electromagnetic elastic scattering. Justify the neglect of the electron mass and show that $q^2 \simeq -4EE' \sin^2 \theta/2$ and $Q^2 > 0$.

Elastic scattering. Amplitude at Born order.

Exclusive reactions as a nuclear manometer Electromagnetic current:

$$J_{\mu}^{\rm em}(y) = \sum_{q=u,d,s,\dots} e_q \bar{q}(y) \gamma_{\mu} q(y)$$

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

 \blacksquare From invariance under translations, take ${\it J}^{\rm em}$ at 0.

Kinematics of elastic scattering on the nucleon

• Amplitude $\mathcal{M}(eN \to eN)$ at **Born order**: $\mathcal{M}(eN \to eN) = \bar{u}(k', \lambda')\gamma^{\mu}u(k, \lambda)\frac{e^2}{q^2}\langle N, p', h' | \mathcal{J}_{\mu}^{em}(0) | N, p, h \rangle$

H. Moutarde | EJC 2022 | 7 / 131

Exclusive reactions as a nuclear manometer

Most general **Lorentz structure** (q = p' - p):

 $\langle \pi, p' \left| J_{\mu}^{\text{em}}(0) \right| \pi, p \rangle = a_1 p_{\mu} + a_2 p'_{\mu} + a_3 q_{\mu}$

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Use 4-momentum conservation:

Exclusive reactions as a nuclear manometer

• Most general **Lorentz structure**
$$(q = p' - p)$$
:

$$\left\langle \pi, p' \left| J_{\mu}^{\text{em}}(0) \right| \pi, p \right\rangle = a_1 p_{\mu} + a_2 p'_{\mu} + a_3 q_{\mu}$$

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

$$\langle \pi, p' | J_{\mu}^{\text{em}}(0) | \pi, p \rangle = (a_1 + a_2) \frac{(p + p')_{\mu}}{2} + (a_3 - \frac{a_1}{2} + \frac{a_2}{2}) q_{\mu}$$

Most general **Lorentz structure** (q = p' - p):

Exclusive reactions as a nuclear manometer

$\left\langle \pi, p' \left| J_{\mu}^{\text{em}}(0) \right| \pi, p \right\rangle = a_1 p_{\mu} + a_2 p'_{\mu} + a_3 q_{\mu}$

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation Nucleon charge

radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

• Use 4-momentum conservation: $\langle \pi, p' \left| J_{\mu}^{\text{em}}(0) \right| \pi, p \rangle = (a_1 + a_2) \frac{(p + p')_{\mu}}{2} + \left(a_3 - \frac{a_1}{2} + \frac{a_2}{2} \right) q_{\mu}$

• Enforce current conservation $q^{\mu}J^{\text{e.m.}}_{\mu} = 0$ with $q^2 < 0$:

$$0 = \left(a_3 - \frac{a_1}{2} + \frac{a_2}{2}\right)q^2$$

< □ > < 部 > < 差 > < 差 > 差 = 少 Q ○
H. Moutarde | EJC 2022 | 8 / 131

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation Nucleon charge radius

Summary

General ideas

Extrapolation Concepts and

General outline

• Most general Lorentz structure (q = p' - p): $\langle \pi, p' | J_{\mu}^{em}(0) | \pi, p \rangle = a_1 p_{\mu} + a_2 p'_{\mu} + a_3 q_{\mu}$

■ Use 4-momentum conservation:

$$\pi, p' \left| J_{\mu}^{\text{em}}(0) \right| \pi, p \rangle = (a_1 + a_2) \frac{(p + p')_{\mu}}{2} + \left(a_3 - \frac{a_1}{2} + \frac{a_2}{2} \right) q_{\mu}$$

• Enforce current conservation $q^{\mu}J^{e.m.}_{\mu} = 0$ with $q^2 < 0$:

$$0 = \left(\mathsf{a}_3 - \frac{\mathsf{a}_1}{2} + \frac{\mathsf{a}_2}{2}\right)q^2$$

Hermiticity of J^{e.m.}: there exist one real coefficient F such that:

$$\left\langle \pi, \mathbf{p}' \left| J_{\mu}^{\text{e.m.}}(0) \right| \pi, \mathbf{p} \right\rangle = F(\mathbf{p} + \mathbf{p}')_{\mu}$$

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation Nucleon charge radius

Summary

General ideas

Extrapolation Concepts and

lectures

General outline

• Most general Lorentz structure
$$(q = p' - p)$$
:
 $\langle \pi, p' | J_{\mu}^{em}(0) | \pi, p \rangle = a_1 p_{\mu} + a_2 p'_{\mu} + a_3 q_{\mu}$

■ Use 4-momentum conservation:

$$\pi, p' \left| J_{\mu}^{\text{em}}(0) \right| \pi, p \rangle = (a_1 + a_2) \frac{(p + p')_{\mu}}{2} + \left(a_3 - \frac{a_1}{2} + \frac{a_2}{2} \right) q_{\mu}$$

• Enforce current conservation $q^{\mu}J^{e.m.}_{\mu} = 0$ with $q^2 < 0$:

$$0 = \left(\mathsf{a}_3 - \frac{\mathsf{a}_1}{2} + \frac{\mathsf{a}_2}{2}\right)q^2$$

Hermiticity of J^{e.m.}: there exist one real coefficient F such that:

$$\left\langle \pi, p' \left| J_{\mu}^{\text{e.m.}}(0) \right| \pi, p \right\rangle = F(p+p')_{\mu}$$

• *F* is **dimensionless** $(|\pi, p\rangle$ has mass dimension -1).

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation Nucleon charge radius

Summary

General ideas

Extrapolation Concepts and

lectures

General outline

• Most general Lorentz structure (q = p' - p): $\langle \pi, p' | J_{\mu}^{em}(0) | \pi, p \rangle = a_1 p_{\mu} + a_2 p'_{\mu} + a_3 q_{\mu}$

■ Use 4-momentum conservation:

 $\langle \pi, p' | J_{\mu}^{\text{em}}(0) | \pi, p \rangle = (a_1 + a_2) \frac{(p + p')_{\mu}}{2} + (a_3 - \frac{a_1}{2} + \frac{a_2}{2}) q_{\mu}$

■ Enforce current conservation $q^{\mu}J^{e.m.}_{\mu} = 0$ with $q^2 < 0$:

$$0 = \left(\mathsf{a}_3 - \frac{\mathsf{a}_1}{2} + \frac{\mathsf{a}_2}{2}\right)q^2$$

Hermiticity of J^{e.m.}: there exist one real coefficient F such that:

$$\left\langle \pi, \mathbf{p}' \left| J_{\mu}^{\text{e.m.}}(0) \right| \pi, \mathbf{p} \right\rangle = F(\mathbf{p} + \mathbf{p}')_{\mu}$$

■ *F* is **dimensionless** ($|\pi, p\rangle$ has mass dimension -1). ■ *F* **depends on** q^2 **only** (elastic scattering: $-q^2 = 2p \cdot q$).

H. Moutarde | EJC 2022 | 8 / 131

Exclusive reactions as a nuclear manometer

• Most general **Lorentz structure** (q = p' - p):

 $\langle \mathbf{N}, \mathbf{p}' | J_{\mu}^{\text{em}}(0) | \mathbf{N}, \mathbf{p} \rangle = \bar{u}(\mathbf{p}') \Gamma_{\mu}(\mathbf{p}', \mathbf{p}) u(\mathbf{p})$

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

COZ

Unpolarized elastic scattering at Born order. Parameterization of the matrix element: spin-1/2 case (1/2).

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Most general Lorentz structure (q = p' - p): $\langle N, p' | J_{\mu}^{em}(0) | N, p \rangle = \bar{u}(p') \Gamma_{\mu}(p', p) u(p)$

Expand Γ_{μ} in **16 matrices** 1, γ_{ρ} , $[\gamma_{\rho}, \gamma_{\sigma}]$, $\gamma_{5}\gamma_{\rho}$ and γ_{5} :

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline • Most general **Lorentz structure** (q = p' - p): $\langle N, p' | J_{\mu}^{em}(0) | N, p \rangle = \bar{u}(p') \Gamma_{\mu}(p', p) u(p)$

Expand Γ_{μ} in **16 matrices** 1, γ_{ρ} , $[\gamma_{\rho}, \gamma_{\sigma}]$, $\gamma_{5}\gamma_{\rho}$ and γ_{5} :

 $\begin{array}{rcl}
1 & : & p_{\mu}, p'_{\mu} \\
\gamma_{\rho} & : & \gamma_{\mu} \\
[\gamma_{\rho}, \gamma_{\sigma}]: \\
\gamma_{5}\gamma_{\rho} & : \\
\gamma_{5} & : & \emptyset
\end{array}$

• Use **Dirac equations** for u and \overline{u} :

$$\bar{u}(p')(p'-m) = 0$$
 and $(p - m)u(p) = 0$

< □ > < 部 > < 差 > < 差 > 差 = 少 Q ()
H. Moutarde | EJC 2022 | 9 / 131

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation Nucleon charge

radius

Summary

General ideas

Extrapolation Concents and

Concepts and lectures

General outline • Most general Lorentz structure (q = p' - p): $\langle N, p' | J_{\mu}^{em}(0) | N, p \rangle = \bar{u}(p')\Gamma_{\mu}(p', p)u(p)$

Expand Γ_{μ} in **16 matrices** 1, γ_{ρ} , $[\gamma_{\rho}, \gamma_{\sigma}]$, $\gamma_{5}\gamma_{\rho}$ and γ_{5} :

 $\begin{array}{rcl}
1 & : & p_{\mu}, p'_{\mu} \\
\gamma_{\rho} & : & \gamma_{\mu} \\
[\gamma_{\rho}, \gamma_{\sigma}]: \\
\gamma_{5}\gamma_{\rho} & : \\
\gamma_{5} & : & \emptyset
\end{array}$

• Use **Dirac equations** for u and \overline{u} :

$$\bar{u}(p')(p'-m) = 0$$
 and $(p - m)u(p) = 0$

• Need at most 3 **dimensionless** coefficients *a*, *b* and *c*:

$$\left\langle N, p' \left| J_{\mu}^{\text{e.m.}}(0) \right| N, p \right\rangle = \bar{u}(p') \left(a \frac{q_{\mu}}{M} + b \gamma_{\mu} + c \frac{\sigma_{\mu\nu} q^{\nu}}{M} \right) u(p)$$

H. Moutarde EJC 2022 9 / 131

Exclusive reactions as a nuclear manometer

$$\langle N, p' \left| J_{\mu}^{\text{e.m.}}(0) \right| N, p \rangle = \bar{u}(p') \left(a \frac{q_{\mu}}{M} + b \gamma_{\mu} + c \frac{\sigma_{\mu\nu} q^{\nu}}{M} \right) u(p)$$

Need at most 3 dimensionless coefficients a, b and c:

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

< □ > < □ > < □ > < ≥ > < ≥ > < ≥ > ≤ ≥ ≤ ≥ = のQ ○ H. Moutarde | EJC 2022 | 10 / 131

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

```
Elastic scattering
```

Interpretation Nucleon charge

radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

• Need at most 3 **dimensionless** coefficients *a*, *b* and *c*:

$$N, p' \left| J_{\mu}^{\text{e.m.}}(0) \right| N, p \rangle = \bar{u}(p') \left(a \frac{q_{\mu}}{M} + b \gamma_{\mu} + c \frac{\sigma_{\mu\nu} q^{\nu}}{M} \right) u(p)$$

• Enforce current conservation $q^{\mu}J_{\mu}^{\text{e.m.}} = 0$ with $q^2 < 0$:

$$\bar{u}(p')\left(a\frac{q^2}{M}+b\phi+c\frac{\sigma_{\mu\nu}q^{\nu}q^{\mu}}{M}\right)u(p)=0$$

where $\bar{u}(p')(p'-p)u(p) = 0$ (Dirac equation) and $\sigma_{\mu\nu}q^{\nu}q^{\mu} = 0$ (symmetry).

イロト イラト イミト イミト 三日 のへで H. Moutarde | EJC 2022 | 10 / 131

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation Nucleon charge

radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

• Need at most 3 **dimensionless** coefficients *a*, *b* and *c*:

$$N, p' \left| J_{\mu}^{\text{e.m.}}(0) \right| N, p \rangle = \bar{u}(p') \left(a \frac{q_{\mu}}{M} + b \gamma_{\mu} + c \frac{\sigma_{\mu\nu} q^{\nu}}{M} \right) u(p)$$

• Enforce current conservation $q^{\mu}J^{\text{e.m.}}_{\mu} = 0$ with $q^2 < 0$:

$$\bar{u}(p')\left(a\frac{q^2}{M}+b\phi+c\frac{\sigma_{\mu\nu}q^{\nu}q^{\mu}}{M}\right)u(p)=0$$

where $\bar{u}(p')(p'-p)u(p) = 0$ (Dirac equation) and $\sigma_{\mu\nu}q^{\nu}q^{\mu} = 0$ (symmetry).

Hermiticity: *b* is real and *c* is purely imaginary.

イロト イラト イミト イミト 三日 のへで H. Moutarde | EJC 2022 | 10 / 131

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline • Need at most 3 **dimensionless** coefficients *a*, *b* and *c*:

$$N, p' \left| J_{\mu}^{\text{e.m.}}(0) \right| N, p \rangle = \bar{u}(p') \left(a \frac{q_{\mu}}{M} + b \gamma_{\mu} + c \frac{\sigma_{\mu\nu} q^{\nu}}{M} \right) u(p)$$

• Enforce current conservation $q^{\mu}J^{\text{e.m.}}_{\mu} = 0$ with $q^2 < 0$:

$$\bar{u}(p')\left(a\frac{q^2}{M}+b\phi+c\frac{\sigma_{\mu\nu}q^{\nu}q^{\mu}}{M}\right)u(p)=0$$

where $\bar{u}(p')(p'-p)u(p) = 0$ (Dirac equation) and $\sigma_{\mu\nu}q^{\nu}q^{\mu} = 0$ (symmetry).

- **Hermiticity**: *b* is real and *c* is purely imaginary.
- *b* and *c* depend on q^2 only $(-q^2 = 2p \cdot q$ for elastic scattering).

$$\left\langle N \left| J_{\mu}^{\mathrm{em}}(0) \right| N \right\rangle = \bar{u}(p') \left(F_1(Q^2) \gamma_{\mu} + F_2(Q^2) \frac{i}{2M} \sigma_{\mu\nu} q^{\nu} \right) u(p)$$

H. Moutarde | EJC 2022 | 10 / 131

Nucleon form factors. Pauli-Dirac and Sachs parameterizations.

Pauli-Dirac parameterization

Exclusive reactions as a nuclear manometer

$\left\langle N \left| J_{\mu}^{\mathrm{em}}(0) \right| N \right\rangle = \bar{u}(p') \left(F_1(Q^2) \gamma_{\mu} + F_2(Q^2) \frac{i}{2M} \sigma_{\mu\nu} q^{\nu} \right) u(p)$

Motivation Warm-up: elastic form

factors Elastic scattering Interpretation Nucleon charge radius Summary General ideas Extrapolation Concents and

Sachs parameterization

$$\langle N | J_{\mu}^{\text{em}}(0) | N \rangle = \bar{u}(p') \left(\frac{G_{E}(Q^{2}) - \tau GM(Q^{2})}{1 - \tau} \frac{P_{\mu}}{M} + G_{M}(Q^{2}) \frac{i}{2M} \sigma_{\mu\nu} q^{\nu} \right) u(p)$$

with
$$\tau = Q^2/(4M^2)$$
 and:
 $G_E(Q^2) = F_1(Q^2) + \frac{Q^2}{4M^2}F_2(Q^2),$
 $G_M(Q^2) = F_1(Q^2) + F_2(Q^2).$

H. Moutarde | EJC 2022 | 11 / 131

DE LA RECAENCAE À L'INDUSTI

Nucleon form factors and elastic scattering. Expression of the cross section in terms of form factors.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation Concepts and

General

$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{d}}{\mathrm{d}\Omega}$

with:

Mott cross section Scattering of a relativistic electron on a point-like spinless particle: $\frac{d\sigma}{d\Omega}\Big)_{Mott} = \frac{Q^2 \alpha^2 \cos^2 \frac{\theta}{2}}{4E^2 \sin^4 \frac{\theta}{2}} \frac{E'}{E}$

Rosenbluth cross section

Scattering of a relativistic electron on a spin-1/2 composite target:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{d\sigma}{d\Omega} \bigg|_{\mathrm{Mott}} \left(\frac{G_{E}^{2}(Q^{2}) + \tau G_{M}^{2}(Q^{2})}{1 + \tau} + 2\tau G_{M}^{2}(Q^{2}) \tan^{2}\frac{\theta}{2} \right)$$

 $\tau \equiv Q^2/(4M^2)$

< □ ト < ⑦ ト < 差 ト < 差 ト 差 声 の Q ペ</p>
H. Moutarde | EJC 2022 | 12 / 131

Nucleon form factors and elastic scattering. Expression of the cross section in terms of form factors.

 $\frac{\theta}{2}$

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Rosenbluth cross section

Scattering of a relativistic electron on a spin-1/2 composite target:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{d\sigma}{d\Omega} \bigg|_{\mathrm{Mott}} \left(\frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1 + \tau} + 2\tau G_M^2(Q^2) \tan^2 \theta \right)$$

with:

$$\tau \equiv {\cal Q}^2/(4M^2)$$

Exercise 0.2

Establish the relation between the energies E and E' of the incoming and outgoing electrons and the scattering angle θ . Comment on the number of independent kinematic variables.

$$E' = \frac{E}{1 + \frac{2E}{M}\sin^2\frac{\theta}{2}}$$

H. Moutarde | EJC 2022 | 12 / 131

Interpretation of form factors. Nonrelativistic scattering off a spherically symmetric potential.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Nonrelativistic scattering (scalar particle)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}k'\mathrm{d}\Omega'} \propto |\langle f|V|i\rangle|^2$$

$$\langle f|V|i\rangle = \int \mathrm{d}^3\vec{r}e^{-i\vec{k'}\cdot\vec{r}}V(r)e^{i\vec{k}\cdot\vec{r}}$$

$$\vec{q} = \vec{k}-\vec{k'}$$

Spherically symmetric charge distribution

$$(\mathbf{r}) = \frac{Ze^2}{4\pi} \int_{\mathcal{V}} \mathrm{d}^3 \vec{\mathbf{r}} \frac{\rho(\mathbf{r}')}{|\vec{\mathbf{r}} - \vec{\mathbf{r}'}|}$$

< □ > < ⑦ > < 差 > < 差 > えき = シーン (○)
H. Moutarde | EJC 2022 | 13 / 131

C23

Interpretation of form factors. Nonrelativistic scattering off a spherically symmetric potential.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Spherically symmetric charge distribution

Compute in spherical coordinates:

$$\langle f|V|i\rangle = Ze^2 \int_{\mathcal{V}} \mathrm{d}^3 \vec{r'} \, e^{i\vec{q} \cdot \vec{r'}} \rho(r') \int_0^{+\infty} \mathrm{d}R \, R \frac{\sin qR}{qR}$$

Cez

Interpretation of form factors. Nonrelativistic scattering off a spherically symmetric potential.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Spherically symmetric charge distribution $V(r) = \frac{Ze^2}{4\pi} \int_{\mathcal{V}} d^3 \vec{r} \frac{\rho(r')}{|\vec{r} - \vec{r'}|}$ $\langle f | \mathcal{V} | i \rangle = \int d^3 \vec{r} e^{-i\vec{q} \cdot \vec{r}} \mathcal{V}(r)$

Compute in spherical coordinates: Diverge! $\langle f | V | i \rangle = Z e^2 \int_{\mathcal{V}} d^3 \vec{r'} e^{i\vec{q} \cdot \vec{r'}} \rho(r') \int_0^{+\infty} dR R \frac{\sin qR}{qR}$

< □ > < ⑦ > < 差 > < 差 > えき = シーン (○)
H. Moutarde | EJC 2022 | 13 / 131

Cea

Interpretation of form factors. Nonrelativistic scattering off a spherically symmetric potential.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Spherically symmetric charge distribution

$$V(r) = \frac{Ze^2}{4\pi} \int_{\mathcal{V}} d^3 \vec{r} \frac{\rho(r')e^{-\frac{|\vec{r}-\vec{r}'|}{a}}}{|\vec{r}-\vec{r}'|}$$

$$\langle f|V|i\rangle = \int d^3 \vec{r} e^{-i\vec{q}\cdot\vec{r}} V(r)$$

Compute in spherical coordinates:

$$\langle f|V|i \rangle = Ze^2 \int_{\mathcal{V}} d^3 \vec{r'} e^{i\vec{q} \cdot \vec{r'}} \rho(r') \int_0^{+\infty} dR R \frac{\sin qR}{qR}$$

Regularize: Yukawa screening ($a \simeq 10^{-10} m \simeq 0.5 \text{ keV}^{-1}$)

 $\langle f|V|i\rangle = \frac{\angle e^2}{q^2 + \frac{1}{a^2}}F(Q^2) \quad \text{with } F(Q^2) = \int_{\mathcal{V}} \mathrm{d}^3\vec{r}\rho(\vec{r})e^{i\vec{q}\cdot\vec{r}}$

< □ > < ⑦ > < ミ > < ミ > ミ = シ へ ?
H. Moutarde | EJC 2022 | 13 / 131
Interpretation of form factors. Nonrelativistic scattering off a spherically symmetric potential.

Exclusive reactions as a nuclear manometer

Spl

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

$$\vec{r} - \vec{r'} \qquad V(r) = \frac{Ze^2}{4\pi} \int_{\mathcal{V}} d^3 \vec{r'} \frac{\rho(r')}{|\vec{r} - \vec{r'}|}$$

$$\vec{r'} \qquad V(r) = \int d^3 \vec{r} e^{-i\vec{q} \cdot \vec{r}} V(r)$$

Compute in spherical coordinates:

$$\langle f|V|i \rangle = Ze^2 \int_{\mathcal{V}} d^3 \vec{r'} e^{i\vec{q} \cdot \vec{r'}} \rho(r') \int_0^{+\infty} dR R \frac{\sin qR}{qR}$$
Regularize: Yukawa screening $(a \simeq 10^{-10} \ m \simeq 0.5 \ \text{keV}^{-1})$

$$\langle f|V|i \rangle = \frac{Ze^2}{q^2 + \frac{1}{a^2}} F(Q^2) \quad \text{with } F(Q^2) = \int_{\mathcal{V}} d^3 \vec{r} \rho(\vec{r}) e^{i\vec{q} \cdot \vec{r}}$$

$$\simeq \frac{Ze^2}{q^2} F(Q^2) \quad \text{for } Q \simeq 1. \ \text{GeV}$$

《□ 》 《□ 》 《 ■ 》 《 ■ 》 《 ■ 》 ④ ■ ⑦ ④ ○
H. Moutarde | EJC 2022 | 13 / 131

OF LA RECHERCHE À L'INDUSTR

Interpretation of form factors. Rutherford scattering.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Rutherford cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left(\frac{Z\alpha}{2E}\right)^2 \frac{1}{\sin^2\frac{\theta}{4}} |F(Q^2)|^2$$

where F is the **3D** Fourier transform of the target charge distribution.

Exercise 0.3

Consider $\rho(r) = Ce^{-mr}$ where m > 0 and C is such that the total charge is normalized to 1. Show that $F(Q^2) = 1/(1 + Q^2/m^2)^2$ (dipole parameterization).

C22

Interpretation of form factors. Normalization of nucleon form factors.

Exclusive reactions as a nuclear manometer

Take proton state with momentum k: |p, k⟩.
Consider charge operator: Q |p, k⟩ = + |p, k⟩

$$\mathbb{Q} = \int \mathrm{d}^3 \vec{r} J_0^{\mathrm{e.m.}}(\vec{r})$$

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Interpretation of form factors. Normalization of nucleon form factors.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Take proton state with momentum k: |p, k⟩.
 Consider charge operator: Q |p, k⟩ = + |p, k⟩
 Q = ∫ d³ r J₀^{e.m.}(r)

• Then $\langle p, k' | \mathbb{Q} | p, k \rangle = \langle k' | k \rangle = 2E_{\vec{k}}(2\pi)^3 \delta^{(3)}(\vec{k'} - \vec{k})$ and

← □ ト ← ⑦ ト ← 臣 ト ← 臣 ト 三日 つ へ ()
H. Moutarde | EJC 2022 | 15 / 131

Interpretation of form factors. Normalization of nucleon form factors.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Take **proton state** with momentum
$$k: |p, k\rangle$$
.
Consider **charge operator**: $\mathbb{Q} |p, k\rangle = + |p, k\rangle$
 $\mathbb{Q} = \int d^{3}\vec{r} J_{0}^{\text{e.m.}}(\vec{r}) = e^{i\mathbb{P} \cdot (t,\vec{r})} J_{0}^{\text{e.m.}}(0) e^{-i\mathbb{P} \cdot (t,\vec{r})}$

• Then
$$\langle p, k' | \mathbb{Q} | p, k \rangle = \langle k' | k \rangle = 2E_{\vec{k}}(2\pi)^3 \delta^{(3)}(\vec{k'} - \vec{k})$$
 and
 $\langle p, k' | \mathbb{Q} | p, k \rangle = \int d^3 \vec{r} e^{i(\vec{k'} - \vec{k}) \cdot \vec{r}} e^{i(E_{\vec{k'}} - E_{\vec{k}})t} \langle p, k' | J_0^{\text{e.m.}}(0) | p, k \rangle$

Interpretation of form factors. Normalization of nucleon form factors.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

1

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Take **proton state** with momentum
$$k: |p, k\rangle$$
.
Consider **charge operator**: $\mathbb{Q} |p, k\rangle = + |p, k\rangle$
 $\mathbb{Q} = \int d^{3}\vec{r} J_{0}^{\text{e.m.}}(\vec{r}) = e^{\mathbb{P} \cdot (t,\vec{r})} J_{0}^{\text{e.m.}}(0) e^{-i\mathbb{P} \cdot (t,\vec{r})}$

Then
$$\langle p, k' | \mathbb{Q} | p, k \rangle = \langle k' | k \rangle = 2E_{\vec{k}}(2\pi)^3 \delta^{(3)}(\vec{k'} - \vec{k})$$
 and

$$p, k' |\mathbb{Q}| p, k \rangle = \int d^{3} \vec{r} e^{i(\vec{k'} - \vec{k}) \cdot \vec{r}} e^{i(E_{\vec{k'}} - E_{\vec{k}})t} \langle p, k' | J_{0}^{\text{e.m.}}(0) | p, k \rangle$$

$$= (2\pi)^{3} \delta^{(3)}(\vec{k'} - \vec{k}) \bar{u}(k) \gamma_{0} F_{1}(0) u(k)$$

《□》 《□》 《三》 《三》 三国 のへで H. Moutarde | EJC 2022 | 15 / 131 C02

Interpretation of form factors. Normalization of nucleon form factors.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Take **proton state** with momentum
$$k: |p, k\rangle$$
.
Consider **charge operator**: $\mathbb{Q} |p, k\rangle = + |p, k\rangle$
 $\mathbb{Q} = \int d^{3}\vec{r} J_{0}^{e.m.}(\vec{r}) = e^{i\mathbb{P} \cdot (t,\vec{r})} J_{0}^{e.m.}(0) e^{-i\mathbb{P} \cdot (t,\vec{r})}$

Then
$$\langle p, k' | \mathbb{Q} | p, k \rangle = \langle k' | k \rangle = 2E_{\vec{k}}(2\pi)^3 \delta^{(3)}(\vec{k'} - \vec{k})$$
 and

$$\begin{aligned} \left\langle p, k' \left| \mathbb{Q} \right| p, k \right\rangle &= \int d^{3} \vec{r} e^{i(\vec{k'} - \vec{k}) \cdot \vec{r}} e^{i(E_{\vec{k'}} - E_{\vec{k}})t} \left\langle p, k' \left| J_{0}^{\text{e.m.}}(0) \right| p, k \right\rangle \\ &= (2\pi)^{3} \delta^{(3)}(\vec{k'} - \vec{k}) \overline{u}(k) \gamma_{0} F_{1}(0) u(k) \\ &= 2E_{\vec{k}} F_{1}(0) (2\pi)^{3} \delta^{(3)}(\vec{k'} - \vec{k}) \end{aligned}$$

C02

Interpretation of form factors. Normalization of nucleon form factors.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Take **proton state** with momentum
$$k$$
: $|p, k\rangle$.
Consider **charge operator**: $\mathbb{Q} |p, k\rangle = + |p, k\rangle$
 $\mathbb{Q} = \int d^{3}\vec{r} J_{0}^{\text{e.m.}}(\vec{r}) = e^{i\mathbb{P} \cdot (t,\vec{r})} J_{0}^{\text{e.m.}}(0) e^{-i\mathbb{P} \cdot (t,\vec{r})}$

Then
$$\langle p, k' | \mathbb{Q} | p, k \rangle = \langle k' | k \rangle = 2E_{\vec{k}}(2\pi)^3 \delta^{(3)}(\vec{k'} - \vec{k})$$
 and

$$p, k' |\mathbb{Q}| p, k\rangle = \int d^{3}\vec{r} e^{i(\vec{k'} - \vec{k}) \cdot \vec{r}} e^{i(E_{\vec{k'}} - E_{\vec{k}})t} \langle p, k' | J_{0}^{\text{e.m.}}(0) | p, k\rangle$$

$$= (2\pi)^{3} \delta^{(3)}(\vec{k'} - \vec{k}) \bar{u}(k) \gamma_{0} F_{1}(0) u(k)$$

$$= 2E_{\vec{k}} F_{1}(0) (2\pi)^{3} \delta^{(3)}(\vec{k'} - \vec{k})$$

• The form factor F_1 at zero momentum transfer is the **electric charge**.

Interpretation of form factors. Normalization of nucleon form factors.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Take **proton state** with momentum
$$k: |p, k\rangle$$
.
Consider **charge operator**: $\mathbb{Q} |p, k\rangle = + |p, k\rangle$
 $\mathbb{Q} = \int d^3 \vec{r} J_0^{\text{e.m.}}(\vec{r}) = e^{i\mathbb{P} \cdot (t,\vec{r})} J_0^{\text{e.m.}}(0) e^{-i\mathbb{P} \cdot (t,\vec{r})}$

Then
$$\langle p, k' | \mathbb{Q} | p, k \rangle = \langle k' | k \rangle = 2E_{\vec{k}}(2\pi)^3 \delta^{(3)}(\vec{k'} - \vec{k})$$
 and

$$p, k' |\mathbb{Q}| p, k\rangle = \int d^{3}\vec{r} e^{i(\vec{k'}-\vec{k})} \cdot \vec{r} e^{i(E_{\vec{k'}}-E_{\vec{k}})t} \langle p, k' | J_{0}^{\text{e.m.}}(0) | p, k\rangle$$

$$= (2\pi)^{3} \delta^{(3)}(\vec{k'}-\vec{k}) \bar{u}(k) \gamma_{0} F_{1}(0) u(k)$$

$$= 2E_{\vec{k}} F_{1}(0) (2\pi)^{3} \delta^{(3)}(\vec{k'}-\vec{k})$$

• The form factor F_1 at zero momentum transfer is the **electric charge**.

H. Moutarde | EJC 2022

15 / 131

Similarly, the form factor F₂ is normalized to the anomalous magnetic moment.

OF LA RECARRONE À L'INDUSTR

Interpretation of form factors. Nucleon form factors in the Breit frame.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Breit frame

 \vec{p}

Frame in which the **outgoing** nucleon has a 3-momentum opposite to that of the **incoming** nucleon.

OF LA RECARRONE À L'INDUSTR

Interpretation of form factors. Nucleon form factors in the Breit frame.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Breit frame

Frame in which the **outgoing** nucleon has a 3-momentum opposite to that of the **incoming** nucleon.

"Brick wall condition"

OF LA RECARDAR À L'INDUSTR

Interpretation of form factors. Nucleon form factors in the Breit frame.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation Concepts and

General outline

Breit frame

p

Frame in which the **outgoing** nucleon has a 3-momentum opposite to that of the **incoming** nucleon.

"Brick wall condition"

Evaluate matrix element of *J*^{e.m.} in the Breit frame:

$$\langle \mathcal{N}(-\vec{p}) | J_0^{\text{e.m.}} | \mathcal{N}(\vec{p}) \rangle = \bar{u}(p') \left(F_1 \gamma_0 + F_2 \frac{i}{2M} \sigma_{0\nu} q^{\nu} \right) u(p)$$

OF LA RECIERCIE À L'INDUST

Interpretation of form factors. Nucleon form factors in the Breit frame.

 $\vec{p}' = -\vec{p}$ q = p - p'

Ď

Breit frame

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Frame in which the **outgoing** nucleon

has a 3-momentum opposite to that

"Brick wall condition"

of the incoming nucleon.

OF LA RECIERCIE À L'INDUST

Interpretation of form factors. Nucleon form factors in the Breit frame.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation Concepts and

General outline

Breit frame

Frame in which the **outgoing** nucleon has a 3-momentum opposite to that of the **incoming** nucleon.

"Brick wall condition"

Evaluate matrix element of $J^{e.m.}$ in the Breit frame:

$$\langle \mathcal{N}(-\vec{p}) | J_0^{\text{e.m.}} | \mathcal{N}(\vec{p}) \rangle = \bar{u}(p') \left(F_1 \gamma_0 + F_2 \frac{i}{2M} \sigma_{0\nu} q^{\nu} \right) u(p)$$

= $\bar{u}(p') \left((F_1 + F_2) \gamma_0 - F_2 \frac{(p+p')_0}{2M} \right) u(p)$

OF LA RECEPCIE À L'INDUST

Interpretation of form factors. Nucleon form factors in the Breit frame.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation Concepts and lectures

General outline

Frame in which the **outgoing** nucleon has a 3-momentum opposite to that of the **incoming** nucleon.

"Brick wall condition"

Evaluate matrix element of $J^{e.m.}$ in the Breit frame:

OF LA RECARDAR À L'INDUSTR

Interpretation of form factors. Nucleon form factors in the Breit frame.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation Concepts and lectures

General outline

Breit frame

Frame in which the **outgoing** nucleon has a 3-momentum opposite to that of the **incoming** nucleon.

"Brick wall condition"

Evaluate matrix element of $J^{e.m.}$ in the Breit frame:

$$\langle \mathcal{N}(-\vec{p}) | J_0^{\text{e.m.}} | \mathcal{N}(\vec{p}) \rangle = \bar{u}(p') \left(F_1 \gamma_0 + F_2 \frac{i}{2M} \sigma_{0\nu} q^{\nu} \right) u(p)$$

$$= \bar{u}(p') \left((F_1 + F_2) \gamma_0 - F_2 \frac{(p+p')_0}{2M} \right) u(p)$$

$$= 2M \delta_{hh'} \left[F_1 + F_2 \left(1 - \frac{E_p^2}{M^2} \right) \right]_{\substack{i=1 \dots N}{i=1}} \sum_{\substack{i=1 \dots N}{i=1}} \sum$$

OF LA RECARDAR À L'INPUSTO

Interpretation of form factors. Nucleon form factors in the Breit frame.

p

Breit frame

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation Concepts and

General outline

Frame in which the **outgoing** nucleon has a 3-momentum opposite to that of the **incoming** nucleon.

"Brick wall condition"

Evaluate matrix element of *J*^{e.m.} in the Breit frame:

$$\begin{split} \mathsf{N}(-\vec{p}) |J_{0}^{\mathrm{e.m.}}| \, \mathsf{N}(\vec{p}) \rangle &= \bar{u}(p') \left(F_{1}\gamma_{0} + F_{2}\frac{i}{2M}\sigma_{0\nu}q^{\nu} \right) u(p) \\ &= \bar{u}(p') \left((F_{1} + F_{2})\gamma_{0} - F_{2}\frac{(p+p')_{0}}{2M} \right) u(p) \\ (q^{2} = -4|\vec{p}|^{2}) &= 2M\delta_{hh'} \left[F_{1} + F_{2}\left(\underbrace{1-\frac{E_{p}^{2}}{M^{2}}}_{\mathsf{H. Moutarde}} \right) \right]_{\mathsf{H. Moutarde}} = \mathbb{EJC} 2022 + \frac{16}{131} \end{split}$$

OF LA RECIERCIE À L'INDUST

Interpretation of form factors. Nucleon form factors in the Breit frame.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation Concepts and lectures

General outline

• Evaluate matrix element of $J^{e.m.}$ in the Breit frame: $\langle N(-\vec{p}) | J_0^{e.m.} | N(\vec{p}) \rangle = \bar{u}(p') \left(F_1 \gamma_0 + F_2 \frac{i}{2M} \sigma_{0\nu} q^{\nu} \right) u(p)$ $= \bar{u}(p') \left((F_1 + F_2) \gamma_0 - F_2 \frac{(p+p')_0}{2M} \right) u(p)$ $= 2M \delta_{bb'} G_E$

< □ > < ⑦ > < ミ > < ミ > ミ = シ へ ○
H. Moutarde | EJC 2022 | 16 / 131

Breit frame

Frame in which the **outgoing** nucleon has a 3-momentum opposite to that of the **incoming** nucleon.

"Brick wall condition"

OF LA RECHERCHE À L'INDUSTR

Interpretation of form factors. Nucleon form factors in the Breit frame.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

Breit frame

p

Frame in which the **outgoing** nucleon has a 3-momentum opposite to that of the **incoming** nucleon.

"Brick wall condition"

H. Moutarde | EJC 2022 |

イロト 不得 トイヨト イヨト ヨヨ ののの

16 / 131

Nucleon form factors in the Breit frame

- *G_E* is the 3D Fourier transform of the **charge density**.
- *G_M* is the 3D Fourier transform of the **magnetization density**.

Nucleon charge radius. Evaluation from elastic scattering in the Breit frame.

Exclusive reactions as a nuclear manometer

Motivation

 $F(Q^2)$

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline • Form factors are **3D** Fourier transforms of distributions in the Breit frame.

For a **spherically symmetric** charge distribution *ρ*:

$$) = \int_{0}^{+\infty} dr \rho(r) 4\pi r^{2} \frac{\sin qr}{qr}$$

= $\int_{0}^{+\infty} dr \rho(r) 4\pi r \frac{1}{q} \left(qr - \frac{q^{3}r^{3}}{6} + \dots \right)$
 $\simeq \int_{0}^{+\infty} dr 4\pi r^{2} \rho(r) - \frac{q^{2}}{6} \int_{0}^{+\infty} dr 4\pi r^{2} r^{2} \rho(r) + \dots$
= $1 - \frac{q^{2}}{6} \langle r^{2} \rangle + \dots$

Define a charge radius by:

OF LARGERENE À L'INDUSTRI

Nucleon charge radius. Charge radius from elastic scattering measurements.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

H. Moutarde | EJC 2022 | 18 / 131

What have we learnt so far?

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

- Elastic scattering
- Interpretation
- Nucleon charge radius

Summary

General ideas

Extrapolation

Concepts and lectures

General outline

- Start with the matrix element of a **conserved current**.
- Enforce symmetry principles to parameterize the matrix element with a restricted set of elastic form factors (EFFs).
- Relate normalization of EFF to conserved electric charge.
- Interpret EFFs in a particular frame.
- Define electric **charge radius**.
- Identify a scattering process to measure EFFs.
- Use a **dipole Ansatz** for simple orders of magnitude.

What have we learnt so far? From electric charge to pressure.

Exclusive reactions as a nuclear manometer

Motivation

Warm-up: elastic form factors

- Elastic scattering
- Interpretation
- Nucleon charge radius

Summary

General ideas

Extrapolation Concepts and

Concepts an lectures

General outline

- Start with the matrix element of a conserved current. Energy-momentum tensor (EMT)
- Enforce symmetry principles to parameterize the matrix element with a restricted set of elastic form factors (EFFs).

Gravitational form factors (GFFs)

- Relate normalization of EFF to conserved electric charge.
 Energy and momentum
- Interpret EFFs in a particular frame. Breit frame (not restrictive)
- Define electric charge radius.

Mechanical radius

- Identify a scattering process to measure EFFs. Deeply virtual Compton scattering (DVCS) depending on Generalized parton distributions (GPDs)
- Use a **dipole Ansatz** for simple orders of magnitude.

H. Moutarde | EJC 2022 | 20 / 131

General outline.

Exclusive reactions as a nuclear manometer

1 Energy-momentum tensor

Gravitational form factors and pressure distribution.

Motivation

Warm-up: elastic form factors

Elastic scattering

Interpretation

Nucleon charge radius

Summary

General ideas

Extrapolation Concepts and

General outline

2 Generalized parton distributions

An indirect way to access gravitational form factors.

▶ Go to Part II.

3 Deeply virtual Compton scattering Scattering processes sensitive to generalized parton distributions.

4 Extraction of pressure distributions *From theory to numbers.* ▶ Go to Part III.

イロト 不良 トイヨト イヨト 山口 ろくろ

22 / 131

H. Moutarde EJC 2022

Monday 5 Sep. 2022 8:45 - 9:45

Part I Energy-momentum tensor

Gravitational form factors and pressure distribution.

Phase space distribution function. Microscopic description of an assembly of particles.

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum

tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

Massive particles (mass *m*, particle density *N*).
Orders of magnitude:

de Broglie wavelength λ \ll Average distance d_0 \ll Typical length scales Le.g. hydrogen in stellar atmosphere at $T \simeq 10^4$ K: $N \simeq 10^{16}$ cm⁻³, $d_0 = (4\pi/3N)^{-1/3} \simeq 3 \times 10^{-6}$ cm, $L \simeq 100$ km, $\lambda = h/\sqrt{3mk_BT} \simeq 2 \times 10^{-9}$ cm.

Approx.: continuous distribution of classical particles.

Distribution function $f(\vec{r}, \vec{v}, t)$

 $f(\vec{r}, \vec{v}, t) d^3 \vec{r} d^3 \vec{v}$ is the average number of particles contained, at time *t*, in a volume element $d^3 \vec{r}$ about \vec{r} and velocity-space element $d^3 \vec{v}$ about \vec{v} .

H. Moutarde | EJC 2022 | 24 / 131

Phase space distribution function. Macroscopic properties of an assembly of particles.

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum

tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

 Macroscopic properties are computed from the distribution function, *e.g.*:

Particle density:

$$\mathit{N}(\vec{r},t) = \int \mathrm{d}^{3}\vec{v} \mathit{f}(\vec{r},\vec{v},t)$$

• Mass density ρ (atomic weight A):

$$\rho(\vec{r},t) = Am_H N(\vec{r},t)$$

• Average velocity $\langle \vec{v} \rangle$:

$$\left\langle \vec{v} \right\rangle \left(\vec{r},t
ight) = \int \mathrm{d}^{3} \vec{v} \, \vec{v} f(\vec{r},\vec{v},t)$$

f is a 1-particle distribution function: the probability of finding a particle at a given point in phase space us independent of the coordinates of all other particles.
By construction f(*r*, *v*, *t*) is positive.

H. Moutarde | EJC 2022 | 25 / 131

Wigner quasiprobability distribution. Including quantum effects.

Exclusive reactions as a nuclear manometer • Must modify definition of phase space distribution $f(\vec{r}, \vec{v}, t)$ to satisfy **Heisenberg uncertainty principle**.

Phase space distributions
Aside on kinetic theory
Wigner distribution
Energy- momentum tensor
Gravitational form factors
Sum rules
3D distribution
Internal pressure
Summary
Abbreviations

< □ ト < ⑦ ト < 差 ト < 差 ト 差 声 の Q ペ</p> H. Moutarde | EJC 2022 | 26 / 131

Wigner quasiprobability distribution. Including quantum effects.

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

• Must modify definition of phase space distribution $f(\vec{r}, \vec{v}, t)$ to satisfy **Heisenberg uncertainty principle**.

Change kinetic momentum $\vec{p} = m\vec{v}$ to canonical momentum $\vec{p} = \partial \mathcal{L} / \partial \vec{v}$.

Wigner distribution \mathcal{W} (pure state)

Let ψ be the **wavefunction** of the considered system. The **Wigner distribution** $\mathcal{W}(\vec{r}, \vec{p})$ is:

$$\mathcal{V}(\vec{r},\vec{p},t) = \int \frac{\mathrm{d}^3 \vec{s}}{(2\pi)^3} \,\psi^*\left(\vec{r} - \frac{1}{2}\vec{s},t\right)\psi\left(\vec{r} + \frac{1}{2}\vec{s},t\right)e^{i\vec{p}\cdot\vec{s}}$$

⁄ Wigner (1932)

Wigner quasiprobability distribution. Including quantum effects.

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

• Must modify definition of phase space distribution $f(\vec{r}, \vec{v}, t)$ to satisfy **Heisenberg uncertainty principle**.

Change kinetic momentum $\vec{p} = m\vec{v}$ to canonical momentum $\vec{p} = \partial \mathcal{L} / \partial \vec{v}$.

Wigner distribution \mathcal{W} (pure state)

Let ψ be the **wavefunction** of the considered system. The **Wigner distribution** $\mathcal{W}(\vec{r}, \vec{p})$ is:

$$\Psi(\vec{r},\vec{p},t) = \int \frac{\mathrm{d}^3\vec{s}}{(2\pi)^3} \psi^*\left(\vec{r}-\frac{1}{2}\vec{s},t\right)\psi\left(\vec{r}+\frac{1}{2}\vec{s},t\right)e^{i\vec{p}\cdot\vec{s}}$$

⁄ Wigner (1932)

By construction $\mathcal{W}(\vec{r}, \vec{p}, t)$ is real but not necessarily positive.

H. Moutarde | EJC 2022 | 26 / 131

Wigner quasiprobability distribution. Properties (pure state).

Recover \vec{r} and \vec{p} **probability densities**:

Exclusive reactions as a nuclear manometer

$$\mathrm{d}^{3}\vec{p}\,\mathcal{W}(\vec{r},\vec{p}) = \int \frac{\mathrm{d}^{3}\,\vec{s}}{(2\pi)^{3}}\psi^{*}\left(\vec{r}-\frac{\vec{s}}{2}\right)\psi\left(\vec{r}+\frac{\vec{s}}{2}\right)\int \mathrm{d}^{3}\vec{p}e^{i\vec{p}\cdot\vec{s}}$$

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum

tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

< □ ト < ⑦ ト < 差 ト < 差 ト 差 声 の Q ペ</p>
H. Moutarde | EJC 2022 | 27 / 131

Wigner quasiprobability distribution. Properties (pure state).

Exclusive
reactions as a
nuclear
manometer

$$\int d^{3}\vec{p} \,\mathcal{W}(\vec{r},\vec{p}) = \int \frac{d^{3}\vec{s}}{(2\pi)^{3}}\psi^{*}\left(\vec{r}-\frac{\vec{s}}{2}\right)\psi\left(\vec{r}+\frac{\vec{s}}{2}\right)\int d^{3}\vec{p}e^{i\vec{p}\cdot\vec{s}}$$
Phase space
distributions
Aside on kinetic
therey
Wigner distributions

Energymomentum tensor

Ρ Ь

٧

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

H. Moutarde | EJC 2022 | 27 / 131

Wigner quasiprobability distribution. Properties (pure state).

Exclusive reactions as a nuclear manometer $\int d^{3}\vec{p} \,\mathcal{W}(\vec{r},\vec{p}) = \int \frac{d^{3}\vec{s}}{(2\pi)^{3}} \psi^{*}\left(\vec{r}-\frac{\vec{s}}{2}\right) \psi\left(\vec{r}+\frac{\vec{s}}{2}\right) \int d^{3}\vec{p} e^{i\vec{p}\cdot\vec{s}}$ Phase space distributions Aside on kinetic theory Wigner distribution $= \int d^{3}\vec{s}\psi^{*}\left(\vec{r}-\frac{\vec{s}}{2}\right) \psi\left(\vec{r}+\frac{\vec{s}}{2}\right) \delta^{(3)}(\vec{s})$ $= \psi^{*}(\vec{r})\psi(\vec{r})$

Energymomentum

tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

Wigner quasiprobability distribution. Properties (pure state).

Exclusive reactions as a nuclear manometer **Recover** \vec{r} and \vec{p} **probability densities**:

 $\int \mathrm{d}^3 \vec{p} \, \mathcal{W}(\vec{r}, \vec{p}) = |\psi(\vec{r})|^2$

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form

factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

Wigner quasiprobability distribution. Properties (pure state).

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

• Recover \vec{r} and \vec{p} **probability densities**:

$$\int d^3 \vec{p} \, \mathcal{W}(\vec{r}, \vec{p}) = |\psi(\vec{r})|^2$$
$$\int d^3 \vec{r} \, \mathcal{W}(\vec{r}, \vec{p}) = \frac{1}{(2\pi)^3} |\psi(\vec{p})|^2$$

うせん 単正 ふぼやくほやくロマ

H. Moutarde | EJC 2022 | 27 / 131
Wigner quasiprobability distribution. Properties (pure state).

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

Recover \vec{r} and \vec{p} **probability densities**:

$$\int d^{3}\vec{p} \,\mathcal{W}(\vec{r},\vec{p}) = |\psi(\vec{r})|^{2}$$
$$\int d^{3}\vec{r} \,\mathcal{W}(\vec{r},\vec{p}) = \frac{1}{(2\pi)^{3}} |\psi(\vec{p})|^{2}$$

■ For an observable *A* associated to a function *a*(*r*, *p*) of **phase-space coordinates**:

$$\langle A \rangle = \int \mathrm{d}^3 \vec{r} \mathrm{d}^3 \vec{p} \, a(\vec{r}, \vec{p}) \mathcal{W}(\vec{r}, \vec{p})$$

\land Moyal (1949)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ののべ

27 / 131

H. Moutarde EJC 2022

Wigner quasiprobability distribution. Properties (pure state).

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

Recover \vec{r} and \vec{p} **probability densities**:

$$\int d^{3}\vec{\rho} \,\mathcal{W}(\vec{r},\vec{\rho}) = |\psi(\vec{r})|^{2}$$
$$\int d^{3}\vec{r} \,\mathcal{W}(\vec{r},\vec{\rho}) = \frac{1}{(2\pi)^{3}} |\psi(\vec{\rho})|^{2}$$

■ For an observable *A* associated to a function *a*(*r*, *p*) of **phase-space coordinates**:

$$\langle A \rangle = \int \mathrm{d}^3 \vec{r} \mathrm{d}^3 \vec{p} \, a(\vec{r}, \vec{p}) \mathcal{W}(\vec{r}, \vec{p})$$

\land Moyal (1949)

Quantum mechanical generalization of distribution function $f(\vec{r}, \vec{p})$.

← □ ト ← ⑦ ト ← 臣 ト ← 臣 ト 三日 つ へ ()
H. Moutarde | EJC 2022 | 27 / 131

Wigner quasiprobability distribution. Properties (pure state).

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

Recover
$$\vec{r}$$
 and \vec{p} **probability densities**:

$$\int d^{3}\vec{\rho} \,\mathcal{W}(\vec{r},\vec{\rho}) = |\psi(\vec{r})|^{2}$$
$$\int d^{3}\vec{r} \,\mathcal{W}(\vec{r},\vec{\rho}) = \frac{1}{(2\pi)^{3}} |\psi(\vec{\rho})|^{2}$$

■ For an observable *A* associated to a function *a*(*r*, *p*) of **phase-space coordinates**:

$$\langle A \rangle = \int \mathrm{d}^3 \vec{r} \mathrm{d}^3 \vec{p} \, a(\vec{r}, \vec{p}) \mathcal{W}(\vec{r}, \vec{p})$$

\land Moyal (1949)

- **Quantum mechanical generalization** of distribution function $f(\vec{r}, \vec{p})$.
- Need to consider **mixed states** *e.g.* to take spin into account.

Density matrices.

Putting mixed states in Wigner distributions.

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational for factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

• Consider a system $|\psi\rangle$ which is in state $|k\rangle$ with probability p_k ($1 \le k \le K$ and $\sum_{1}^{K} p_k = 1$).

• Choose a complete set of (orthonormal) states $|u_n\rangle$:

$$|k\rangle = \sum_{n} c_{n}^{(k)} |u_{n}\rangle \quad \text{for } 1 \le k \le n$$

• Compute average value of observable A in state $|k\rangle$:

$$\langle k | A | k \rangle = \sum_{n,m} c_n^{(k)*} c_m^{(k)} A_{nm} \quad \text{with } A_{nm} = \langle u_n | A | u_m \rangle$$

Define operator ρ by matrix element:

$$\rho_{nm} = \langle u_n | \rho | u_m \rangle = \sum_{k=1}^{K} p_k c_n^{(k)*} c_m^{(k)}$$

By construction:

$$\psi |A| \psi \rangle = \sum_{n,m} \rho_{nm} A_{nm} = \operatorname{Tr} \rho A$$

$$(\Box \to \langle \overline{\sigma} \rangle \langle \overline{z} \rangle \langle$$

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution Internal pressure

Summary

Abbreviations

Density operator ρ

Every state can be represented by an **density operator** ρ with the following properties:

1 ρ is hermitian.

2 Tr $\rho = 1$.

3 ρ is positive:

 $\left\langle \psi \left| \rho \right| \psi \right\rangle \geq 0 \quad \text{for all states } \psi$

4 The state is pure if and only if $\rho^2 = \rho$.

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution Internal pressure

Summary

Abbreviations

Density operator ρ

Every state can be represented by an **density operator** ρ with the following properties:

1 ρ is hermitian.

The average value of an hermitian operator is real.

2 Tr
$$\rho = 1$$
.

3 ρ is positive:

 $\left\langle \psi \left| \rho \right| \psi \right\rangle \geq 0 \quad \text{for all states } \psi$

4 The state is pure if and only if $\rho^2 = \rho$.

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution Internal pressure

Summary

Abbreviations

Density operator ρ

Every state can be represented by an **density operator** ρ with the following properties:

1 ρ is hermitian.

The average value of an hermitian operator is real.

2 Tr $\rho = 1$.

The average value of the identity is 1.

```
3 \rho is positive:
```

 $\left\langle \psi \left| \rho \right| \psi \right\rangle \geq 0 \quad \text{for all states } \psi$

4 The state is pure if and only if $\rho^2 = \rho$.

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

Internal pressure

Summary

Abbreviations

Density operator ρ

Every state can be represented by an **density operator** ρ with the following properties:

1 ρ is hermitian.

The average value of an hermitian operator is real.

2 Tr $\rho = 1$.

The average value of the identity is 1.

```
3 \rho is positive:
```

 $\left\langle \psi \left| \rho \right| \psi \right\rangle \geq 0 \quad \text{for all states } \psi$

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

Internal pressure

Summary

Abbreviations

Density operator ρ

Every state can be represented by an **density operator** ρ with the following properties:

1 ρ is hermitian.

The average value of an hermitian operator is real.

2 Tr $\rho = 1$.

The average value of the identity is 1.

```
3 \rho is positive:
```

 $\left\langle \psi \left| \rho \right| \psi \right\rangle \geq 0 \quad \text{for all states } \psi$

The average value of $B = AA^{\dagger}$ is positive. **4** The state is pure if and only if $\rho^2 = \rho$. ρ is a projection operator.

Wigner quasiprobability distribution. Nonrelativistic quantum mechanical definition (mixed state).

Exclusive reactions as a nuclear manometer

Reminder: definition for a pure state.

$$\mathcal{W}_{\text{pure}}(\vec{r},\vec{p},t) = \int \frac{\mathrm{d}^3 \vec{s}}{(2\pi)^3} \,\psi^*\left(\vec{r} - \frac{1}{2}\vec{s},t\right) \psi\left(\vec{r} + \frac{1}{2}\vec{s},t\right) e^{i\vec{p}\cdot\cdot\vec{s}}$$

Wigner distribution \mathcal{W} (mixed state)

Let ρ be the **density operator** of the considered system. The **Wigner distribution** $\mathcal{W}(\vec{r}, \vec{p})$ is:

$$\mathcal{W}(\vec{r},\vec{p}) = \int \frac{\mathrm{d}^3\vec{s}}{(2\pi)^3} \left\langle \vec{r} - \frac{1}{2}\vec{s} \right| \rho \left| \vec{r} + \frac{1}{2}\vec{s} \right\rangle e^{i\vec{p} \cdot \cdot \vec{s}}$$

- Need extensions to describe:
 - Quark fields.
 - Color gauge invariance.
 - Lorentz invariance.

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

• (Trial) Wigner distribution operator $\hat{\mathcal{W}}$:

$$\hat{\mathcal{W}}_{\Gamma}\left((t,\vec{r}),p\right) = \int \mathrm{d}^{4}s\,\bar{\psi}\left(\vec{r}-\frac{1}{2}\vec{s}\right)\Gamma\psi\left(\vec{r}+\frac{1}{2}\vec{s}\right)\,e^{ip\,\cdot\,s}$$

where $\Gamma = 1$, γ_{μ} , $\gamma_{\mu}\gamma_{5}$ or γ_{5} .

- Choose a constant 4-vector n^µ and a non-singular gauge (gauge potentials vanish at spacetime infinity).
- Connect quark fields at $r \pm s/2$ with a Wilson line \mathcal{L} via intermediate points at $n\infty$ to ensure gauge invariance.

Sandwich between nucleon states with relativistic normalization:

$$\mathcal{W}_{\Gamma}\left((t,\vec{r}),p\right) = \frac{1}{2M} \int \frac{\mathrm{d}^{3}\vec{q}}{(2\pi)^{3}} \left\langle N,\frac{\vec{q}}{2} \middle| \hat{\mathcal{W}}_{\Gamma}\left((t,\vec{r}),p\right) \middle| N,-\frac{\vec{q}}{2} \right\rangle$$

$$\stackrel{\text{(2003)}}{\Longrightarrow} \mathrm{Ji} \ (2003)$$

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

Relativistic normalization of 1-particle states:

$$\langle N, p | N, k \rangle = (2\pi)^3 2 E_{\vec{p}} \delta^{(3)} (\vec{p} - \vec{k})$$

• Use translation operator \mathbb{P} : $\phi(x+a) = e^{+i\mathbb{P} \cdot \cdot \cdot a}\phi(x)e^{-i\mathbb{P} \cdot \cdot \cdot a}$

$$(t,\vec{r}),p\Big) = \frac{1}{2M} \int \frac{\mathrm{d}^{3}\vec{q}}{(2\pi)^{3}} e^{-i\vec{q}\cdot\vec{r}} \left\langle N,\frac{\vec{q}}{2} \middle| \hat{\mathcal{W}}_{\Gamma}\left((t,\vec{0}),p\right) \middle| N,-\frac{\vec{q}}{2} \right\rangle$$

To get a non-trivial phase-space dependence on r, take initial and final hadrons with different center-of-mass momenta.

Exercise I.1

Recover the nonrelativistic quantum mechanical definition.

H. Moutarde | EJC 2022 | 32 / 131

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ののべ

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

Nonrelativistic Wigner distribution for quarks in QCD.

$$\mathcal{V}_{\Gamma}\left((t,\vec{r}),p\right) = \frac{1}{2M} \int \frac{\mathrm{d}^{3}\vec{q}}{(2\pi)^{3}} \left\langle N,\frac{\vec{q}}{2} \right| \hat{\mathcal{W}}_{\Gamma}\left((t,\vec{r}),p\right) \left|N,-\frac{\vec{q}}{2}\right\rangle$$

⁄ Ji (2003)

Is it measurable?

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

Nonrelativistic Wigner distribution for quarks in QCD.

$$\mathcal{W}_{\Gamma}\left((t,\vec{r}),p\right) = \frac{1}{2M} \int \frac{\mathrm{d}^{3}\vec{q}}{(2\pi)^{3}} \left\langle \mathcal{N},\frac{\vec{q}}{2} \middle| \hat{\mathcal{W}}_{\Gamma}\left((t,\vec{r}),p\right) \middle| \mathcal{N},-\frac{\vec{q}}{2} \right\rangle$$

⁄ Ji (2003)

■ Is it measurable? Not clear!

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

Nonrelativistic Wigner distribution for quarks in QCD.

$$\mathcal{W}_{\Gamma}\left((t,\vec{r}),p\right) = \frac{1}{2M} \int \frac{\mathrm{d}^{3}\vec{q}}{(2\pi)^{3}} \left\langle N,\frac{\vec{q}}{2} \middle| \hat{\mathcal{W}}_{\Gamma}\left((t,\vec{r}),p\right) \middle| N,-\frac{\vec{q}}{2} \right\rangle$$

⁄ Ji (2003)

- Is it measurable? Not clear!
- It is familiar?

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

Nonrelativistic Wigner distribution for quarks in QCD.

- Is it measurable? Not clear!
- It is familiar? Try with $\Gamma = \gamma_{\mu}$.

$$\hat{\mathcal{W}}_{\gamma_{\mu}}\left((t,\vec{r}),p\right) = \int \mathrm{d}^{4}s\,\bar{\psi}\left(\vec{r}-\frac{1}{2}\vec{s}\right)\gamma_{\mu}\psi\left(\vec{r}+\frac{1}{2}\vec{s}\right)e^{ip\cdot s}$$

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

Nonrelativistic Wigner distribution for quarks in QCD.

$$\mathcal{W}_{\Gamma}\left((t,\vec{r}),p\right) = \frac{1}{2M} \int \frac{\mathrm{d}^{3}\vec{q}}{(2\pi)^{3}} \left\langle N,\frac{\vec{q}}{2} \right| \hat{\mathcal{W}}_{\Gamma}\left((t,\vec{r}),p\right) \left| N,-\frac{\vec{q}}{2} \right\rangle$$

$$\not = \mathbf{Ji} \quad (2003)$$

- Is it measurable? Not clear!
- It is familiar? Try with $\Gamma = \gamma_{\mu}$.

$$\hat{\mathcal{W}}_{\gamma_{\mu}}\left((t,\vec{r}),p\right) = \int \mathrm{d}^{4}s\,\bar{\psi}\left(\vec{r}-\frac{1}{2}\vec{s}\right)\gamma_{\mu}\psi\left(\vec{r}+\frac{1}{2}\vec{s}\right)e^{ip\cdot s}$$

$$\int \frac{\mathrm{d}^{4}p}{(2\pi)^{4}}\hat{\mathcal{W}}_{\gamma_{\mu}}\left((t,\vec{r}),p\right) = \bar{\psi}\left(t,\vec{r}\right)\gamma_{\mu}\psi\left((t,\vec{r})\right)$$

< □	See fully relativistic treatment.	
H. Moutarde	EJC 2022 33 / 131	

H. Moutarde | EJC 2022 | 33 / 131

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory

Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations $\int \frac{\mathrm{d}^4 p}{(2\pi)}$

Nonrelativistic Wigner distribution for quarks in QCD.

- Is it measurable? Not clear!
- It is familiar? Yes!

$$\hat{\mathcal{W}}_{\gamma\mu}\left((t,\vec{r}),p\right) = \int \mathrm{d}^4 s \,\bar{\psi}\left(\vec{r}-\frac{1}{2}\vec{s}\right)\gamma_\mu\psi\left(\vec{r}+\frac{1}{2}\vec{s}\right)e^{ip\cdot s}$$

$$\frac{^4p}{\pi)^4}\hat{\mathcal{W}}_{\gamma\mu}\left((t,\vec{r}),p\right) = \bar{\psi}\left(t,\vec{r}\right)\gamma_\mu\psi\left((t,\vec{r})\right)$$

Matrix element of the electromagnetic current!

Energy-momentum tensor. Quark and gluon contributions.

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory Wigner distribution

Energymomentum tensor

Gravitational form

factors Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

- EMT defined from the invariance under space and time translations.
 - Quark and gluon contributions

$$\begin{split} T_{q}^{\mu\nu} &= \bar{q}\gamma^{\mu}\frac{i}{2} \stackrel{\leftrightarrow}{\mathrm{D}} q \\ T_{g}^{\mu\nu} &= -F^{\mu\lambda}F^{\nu}{}_{\lambda} + \frac{1}{4}\eta^{\mu\nu}F^{2} \end{split}$$

with $\stackrel{\leftrightarrow}{\rm D}$ the symmetric covariant derivative and $F^{\mu\nu}$ the field strength tensor.

•
$$T^{\mu\nu} = \sum_a T^{\mu\nu}_a \ (a = q, g)$$

← □ ト ← ⑦ ト ← 臣 ト ← 臣 ト 三日 つ へ ()
H. Moutarde | EJC 2022 | 34 / 131

Parameterization: massive spin-1/2 target. Introduction of 5 GFFs.

Local, gauge-invariant, asymmetric EMT:

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory Wigner distribution

Energymomentum tensor

Gravitational form

factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

$$\left\langle p', s' \right| T^{\mu\nu}_{a}(0) \left| p, s \right\rangle = \bar{u}(p', s') \left\{ \frac{P^{\mu}P^{\nu}}{M} A_{a}(t) + M\eta^{\mu\nu} \bar{C}_{a}(t) \right. \\ \left. + \frac{\Delta^{\mu}\Delta^{\nu} - \eta^{\mu\nu}\Delta^{2}}{M} C_{a}(t) \right. \\ \left. + \frac{P^{\left\{\mu\right\}}i\sigma^{\nu}\right\}\Delta}{4M} \left[A_{a}(t) + B_{a}(t) \right] \right. \\ \left. + \frac{P^{\left[\mu\right]}i\sigma^{\nu}\right]\Delta}{4M} D_{a}(t) \left. \right\} u(p, s)$$

with P = (p' + p)/2, $\Delta = p' - p$, $t = \Delta^2$ and polarizations s, s'. Shorthand notations: $a^{\{\mu \ b^{\nu}\}} = a^{\mu} b^{\nu} + a^{\nu} b^{\mu}$, $a^{[\mu} b^{\nu]} = a^{\mu} b^{\nu} - a^{\nu} b^{\mu}$, and $i\sigma^{\mu\Delta} = i\sigma^{\mu\lambda}\Delta_{\lambda}$ $\not \simeq$ Lorcé *et al.* (2018) H. Moutarde | EJC 2022 | 35 / 131

Sum rules. Conséquences of Poincaré invariance.

CEA - Saciay

Exclusive reactions as a nuclear manometer

Momentum conservation

 $\sum_{\mathbf{a}=\mathbf{q},\mathbf{g}} A_{\mathbf{a}}(0) = 1$

Phase space distributions

Aside on kinetic theory Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

Spin sum rule

 $\sum_{a=q,g} B_a(0) = 0$

Non-conservation of partial EMT

 $\sum_{a=q,g} \bar{C}_a(t) = 0$

since

 $\langle p', s' | \partial_{\mu} T^{\mu\nu}_{a}(0) | p, s \rangle = i \Delta^{\nu} M \bar{u}(p', s') u(p, s) \bar{C}_{a}(t)$

3D profile of GFFs. Localization in the Wigner sense.

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

 Define distribution of a physical quantity inside a system, by first localizing the system in both position and momentum space.

Breit frame where
$$P^{\mu} = (P^0, \vec{0})$$
 and $\Delta^{\mu} = (0, \vec{\Delta})$
 $\langle T^{\mu\nu}_a \rangle_{BF(\vec{r})} = \int \frac{d^3 \Delta}{(2\pi)^3} e^{-i\vec{\Delta}\vec{r}} \left[\frac{\langle p', s | T^{\mu\nu}_a(0) | p, s \rangle}{2P^0} \right]_{\vec{P} = \vec{0}}$

Specific role of 3D Fourier transform of GFFs.

< □ > < ⑦ > < 毫 > < 毫 > < 毫 > 毫 = 少 Q ○
H. Moutarde | EJC 2022 | 37 / 131

Gravitational form factors. Definition of pressure.

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory Wigner distribution

Energymomentum tensor

Gravitational form factors

Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

Matrix element in the Breit frame
$$(a = q, g)$$
:
 $\left\langle \frac{\Delta}{2} | T_a^{\mu\nu}(0) | - \frac{\Delta}{2} \right\rangle = M \left\{ \eta^{\mu 0} \eta^{\nu 0} \left[A_a(t) + \frac{t}{4M^2} B_a(t) \right] + \eta^{\mu\nu} \left[\bar{C}_a(t) - \frac{t}{M^2} C_a(t) \right] + \frac{\Delta^{\mu} \Delta^{\nu}}{M^2} C_a(t) \right\}$

Anisotropic fluid in **relativistic hydrodynamics**: $\Theta^{\mu\nu}(\vec{r}) = [\varepsilon(r) + p_t(r)] u^{\mu}u^{\nu} - p_t(r)\eta^{\mu\nu} + [p_r(r) - p_t(r)] \chi^{\mu}\chi^{\nu}$ where u^{μ} and $\chi^{\mu} = x^{\mu}/r$.

Define isotropic pressure and pressure anisotropy:

$$p(r) = \frac{p_r(r) + 2p_t(r)}{3}$$

$$s(r) = p_r(r) - p_t(r)$$

🖾 Lorcé et al. (2019)

Cea

Mechanical properties of hadrons. Pressure from gravitational form factors.

Exclusive
reactions as a
nuclear
manometer

$$\frac{\varepsilon_{a}(r)}{M} = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ A_{a}(t) + \bar{C}_{a}(t) + \frac{t}{4M^{2}} \left[B_{a}(t) - 4C_{a}(t) \right] \right\}$$
Phase space
distributions
Aside on kinetic

$$\frac{P_{r,a}(r)}{M} = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\bar{C}_{a}(t) - \frac{4}{r^{2}} \frac{t^{-1/2}}{M^{2}} \frac{d}{dt} \left(t^{3/2} C_{a}(t) \right) \right\}$$
Energy-
momentum
tensor
Gravitational form

$$\frac{P_{t,a}(r)}{M} = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\bar{C}_{a}(t) + \frac{4}{r^{2}} \frac{t^{-1/2}}{M^{2}} \frac{d}{dt} \left[t \frac{d}{dt} \left(t^{3/2} C_{a}(t) \right) \right] \right\}$$
Summary

$$\frac{P_{a}(r)}{M} = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\bar{C}_{a}(t) + \frac{2}{3} \frac{t}{M^{2}} C_{a}(t) \right\}$$
Abbreviations

$$\frac{S_{a}(r)}{M} = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\bar{C}_{a}(t) + \frac{2}{3} \frac{t}{M^{2}} C_{a}(t) \right\}$$

 $\underset{(a)}{\overset{(a)}{=}} \underbrace{\text{Lorce}}_{b} \underbrace{et}_{a} \underbrace{al.}_{a} \underbrace{(2019)}_{a} \underbrace{(2019)}_{a}$

Cea

Mechanical properties of hadrons. Pressure from gravitational form factors.

Exclusive
reactions as a
manometer

$$\frac{\varepsilon_{a}(r)}{M} = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ A_{a}(t) + \bar{C}_{a}(t) + \frac{t}{4M^{2}} \left[B_{a}(t) - 4C_{a}(t) \right] \right\}$$
Phase space
distributions
Aside on kinetic

$$\frac{p_{r,a}(r)}{M} = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\bar{C}_{a}(t) - \frac{4}{r^{2}} \frac{t^{-1/2}}{M^{2}} \frac{d}{dt} \left(t^{3/2} C_{a}(t) \right) \right\}$$
Energy-
momentum
tensor

$$\frac{p_{t,a}(r)}{M} = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\bar{C}_{a}(t) + \frac{4}{r^{2}} \frac{t^{-1/2}}{M^{2}} \frac{d}{dt} \left[t \frac{d}{dt} \left(t^{3/2} C_{a}(t) \right) \right] \right\}$$
Energy-
momentum
tensor

$$\frac{p_{t,a}(r)}{M} = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\bar{C}_{a}(t) + \frac{2}{r^{2}} \frac{t^{-1/2}}{M^{2}} \frac{d}{dt} \left[t \frac{d}{dt} \left(t^{3/2} C_{a}(t) \right) \right] \right\}$$
Sum rules
Sum rules

$$\frac{p_{a}(r)}{M} = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\bar{C}_{a}(t) + \frac{2}{3} \frac{t}{M^{2}} C_{a}(t) \right\}$$
Abbreviations

$$\frac{s_{a}(r)}{M} = \int \frac{d^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\frac{4}{r^{2}} \frac{t^{-1/2}}{M^{2}} \frac{d^{2}}{dt^{2}} \left(t^{5/2} C_{a}(t) \right) \right\}$$

Mechanical properties of hadrons. From the nucleon to compact stars?

Exclusive reactions as a nuclear manometer

Phase space distributions

Aside on kinetic theory Wigner distribution

Energymomentum tensor

Gravitational form factors Sum rules

3D distribution

Internal pressure

Summary

Abbreviations

Neutron stars

Summary

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

Abbreviations

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

Abbreviations used in this part.

Exclusive		
reactions as a		
nuclear		
manometer		

Phase	space
distrib	utions

Aside o	n kinetic
theory	
Wigner	distribution

EFF

EMT

GFF

GPD

Energymomentum tensor

- Gravitational form factors
- Sum rules
- 3D distribution
- Internal pressure

Summary

Abbreviations

DVCS deeply virtual Compton scattering

- elastic form factor
- energy-momentum tensor
- gravitational form factor
- generalized parton distribution

Monday 5 Sep. 2022 16:00 - 17:00

Part II Generalized parton distributions

An indirect way to access gravitational form factors.

▲□▶ ▲□▶ ▲ 글▶ ▲ 글▶ ▲□► ∽ 의 < ○</p>

Light-cone coordinates.

V

Choose privileged axis along which particles have large momentum.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

- n z^0 n^+ z^3
- z axis defined by propagation of fast moving particles.

• Write $v^{\mu} = (v^+, \vec{v}_{\perp}, v^-)$ for a 4-vector v^{μ} with:

Product of two 4-vectors v and w:

$$v^+ = \frac{v^0 + v^3}{\sqrt{2}} \text{ and } v^- = \frac{v^0 - v^3}{\sqrt{2}}$$

$$v \cdot w = v^+ w^- + v^- w^+ - \vec{v}_\perp \cdot \vec{w}_\perp$$

• Take two **light-like** 4-vectors $n_+ = (1, 0, 0, 1)$ and $n_- = (1, 0, 0, -1)$ sucht that:

 $n_+ \cdot n_- = 1$ and $v^{\pm} = v \cdot n_{\mp}$ for any 4-vector v^{μ}

■ For a particle moving at the speed of light in the +z direction (x³ ≃ x⁰): z⁻ ≃ 0 and z⁺ ≃ √2x⁰.
 ■ Interpret x⁺ as light-cone time.

Spin-0 generalized parton distribution. Definition and simple properties.

Exclusive reactions as a nuclear manometer

Reminder Theoretical framework Definition Tomography Representations Link to EMT Experiments and evolution Factorization Evolution

$$H_{\pi}^{q}(x,\xi,t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} \middle| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+}q \left(\frac{z}{2} \right) \middle| \pi, P - \frac{\Delta}{2} \right\rangle_{\substack{z^{+}=0\\z_{\perp}=0}}$$
with $t = \Delta^{2}$ and $\xi = -\Delta^{+}/(2P^{+})$.
$$\bigwedge^{+} I = \int_{z^{-}}^{z^{0}} I = \int_{z^{-}}^{z^{0}}$$

Summary Abbreviations

PDF forward limit

 $H^q(x,0,0) = q(x)$

Spin-0 generalized parton distribution. Definition and simple properties.

Exclusive reactions as a nuclear manometer

Reminder Theoretical framework Definition Tomography Representations Link to EMT Experiments and evolution Factorization Software ecosystem Summary Abbreviations

$$H_{\pi}^{q}(x,\xi,t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} \middle| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+}q \left(\frac{z}{2} \right) \middle| \pi, P - \frac{\Delta}{2} \right\rangle_{\substack{z^{+}=0\\z_{\perp}=0}}$$
with $t = \Delta^{2}$ and $\xi = -\Delta^{+}/(2P^{+})$.

Muller *et al.* (1994)

 $f^{z^{0}}$
Muller *et al.* (1994)

 $f^{z^{0}}$
Muller *et al.* (1997)

 $f^{z^{0}}$

PDF forward limit

Form factor sum rule

 $\int_{-1}^{+1} dx H^q(x,\xi,t) = F_1^q(t)$ $(D \to (D \to (Z \to Z)) = F_1^q(t)$ H. Moutarde | EJC 2022 | 48 / 131
Spin-0 generalized parton distribution. Definition and simple properties.

Exclusive reactions as a nuclear manometer

$H^q_{\pi}(x,\xi,t) =$ $\frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{i \mathbf{x} \mathbf{P}^{+} z^{-}} \left\langle \pi, \mathbf{P} + \frac{\Delta}{2} \middle| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} q \left(\frac{z}{2} \right) \middle| \pi, \mathbf{P} - \frac{\Delta}{2} \right\rangle_{z^{+} = 0}$

Reminder

Theoretical framework

Definition

Tomography Representations Link to EMT

Experiments and evolution

Factorization Evolution Software ecosystem

Summary

Abbreviations

with $t = \Delta^2$ and $\xi = -\Delta^+/(2P^+)$. ▲ Müller et al. (1994) ⊿ Ji (1997)

▲ Radyushkin (1996)

- PDF forward limit
- Form factor sum rule
- H^q is an even function of ξ from time-reversal invariance.

イロト 不得 トイヨト イヨト ヨヨ ののの H. Moutarde | EJC 2022 | 48 / 131

Spin-0 generalized parton distribution. Definition and simple properties.

Exclusive reactions as a nuclear manometer

$H^q_{\pi}(x,\xi,t) =$ $\frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{i\mathbf{x}P^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} \middle| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+}q \left(\frac{z}{2} \right) \middle| \pi, P - \frac{\Delta}{2} \right\rangle_{z^{+}=0}$

Reminder

Theoretical framework

Definition

Tomography Representations Link to EMT

Experiments and evolution

Factorization Evolution Software ecosystem

Summary

Abbreviations

with $t = \Delta^2$ and $\xi = -\Delta^+/(2P^+)$. ▲ Müller et al. (1994)

⊿ Ji (1997)

▲ Radyushkin (1996)

- PDF forward limit
- Form factor sum rule
- H^q is an even function of ξ from time-reversal invariance.
- H^q is **real** from hermiticity and time-reversal invariance. ELE DOG

H. Moutarde EJC 2022 48 / 131

Spin-1/2 generalized parton distributions. Matrix elements of twist-2 bilocal operators.

-213

H. Moutarde | EJC 2022 | 49 / 131

CONTRACTOR OF CONTRACTOR

Spin-1/2 generalized parton distributions. Matrix elements of twist-2 bilocal operators.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition

Tomography

Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

Interpretation

 z^3

- $x \in [\xi, 1]$: q emitted + q absorbed.
- $x \in [-\xi, +\xi]$: \bar{q} emitted + q absorbed.
- $x \in [-1, -\xi]$: \bar{q} emitted + \bar{q} absorbed.

H. Moutarde | EJC 2022 | 49 / 131

Exclusive reactions as a nuclear manometer

Polynomiality

Reminder

Theoretical framework

Definition

Tomography

Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

 $\int_{-\infty}^{+1} dx x^n H^q(x,\xi,t) = \text{polynomial in } \xi$

< □ ト < ⑦ ト < 差 ト < 差 ト 差 声 の Q ペ</p> H. Moutarde | EJC 2022 | 50 / 131

Exclusive
reactions as a
nuclear
manometer

Polynomiality

Reminder

Theoretical framework

Definition

Tomography

Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

Lorentz covariance

• See more on polynomiality.

< □ ト < ⑦ ト < 差 ト < 差 ト 差 声 の Q ペ</p> H. Moutarde | EJC 2022 | 50 / 131

Exclusive reactions as a nuclear manometer

Polynomiality

Lorentz covariance

▶ See more on polynomiality.

Reminder

Theoretical framework

Definition

- Tomography
- Representations
- Link to EMT

Experiments and evolution

- Factorization
- Evolution
- Software ecosystem

Summary

Abbreviations

Positivity

 $H^{q}(x,\xi,t) \leq \sqrt{q\left(rac{x+\xi}{1+\xi}
ight)q\left(rac{x-\xi}{1-\xi}
ight)}$

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition

Tomography

Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

Polynomiality

Positivity

Positivity of Hilbert space norm

See more on positivity.

Lorentz covariance

< □ ト < 圕 ト < 臣 ト < 臣 ト 王 ト シーン </p> H. Moutarde | EJC 2022 | 50 / 131

H. Moutarde EJC 2022

50 / 131

< □ > < □ > < □ > < ≥ > < ≥ > < ≥ > ≤ ≥ ≤ ≥ ⊂ < ⊂</p>
H. Moutarde | EJC 2022 | 50 / 131

H. Moutarde EJC 2022 50 / 131

H. Moutarde EJC 2022

50 / 131

H. Moutarde | EJC 2022 | 50 / 131

3D hadron imaging. First results from global fits to world data.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

Probabilistic interpretation of Fourier transform of $GPD(x, \xi = 0, t)$ in **transverse plane**.

$$\rho(\mathbf{x}, \mathbf{b}_{\perp}, \lambda, \lambda_{N}) = \frac{1}{2} \left[\mathbf{H}(\mathbf{x}, 0, \mathbf{b}_{\perp}^{2}) + \frac{\mathbf{b}_{\perp}^{i} \epsilon_{ji} S_{\perp}^{i}}{M} \frac{\partial \mathbf{E}}{\partial \mathbf{b}_{\perp}^{2}} (\mathbf{x}, 0, \mathbf{b}_{\perp}^{2}) + \lambda \lambda_{N} \tilde{\mathbf{H}}(\mathbf{x}, 0, \mathbf{b}_{\perp}^{2}) \right]$$

 Notations : quark helicity λ, nucleon longitudinal polarization λ_N and nucleon transverse spin S_⊥.

⁄ Burkardt (2000)

H. Moutarde | EJC 2022 | 51 / 131

3D hadron imaging. First results from global fits to world data.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition

Tomography

Representations

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

Probabilistic interpretation of Fourier transform of $GPD(x, \xi = 0, t)$ in **transverse plane**.

$$\rho(\mathbf{x}, b_{\perp}, \lambda, \lambda_{N}) = \frac{1}{2} \left[\mathbf{H}(\mathbf{x}, 0, b_{\perp}^{2}) + \frac{b_{\perp}^{j} \epsilon_{ji} S_{\perp}^{i}}{M} \frac{\partial \mathbf{E}}{\partial b_{\perp}^{2}} (\mathbf{x}, 0, b_{\perp}^{2}) + \lambda \lambda_{N} \tilde{\mathbf{H}}(\mathbf{x}, 0, b_{\perp}^{2}) \right]$$

 Notations : quark helicity λ, nucleon longitudinal polarization λ_N and nucleon transverse spin S_⊥.

\land Burkardt (2000)

Spin-0 double distributions (DDs). A convenient tool to encode GPD properties.

 $N_{\rm DD}$

 α

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition Tomography

Representations

Link to EMT

Experiments and evolution

Factorization Evolution Software ecosystem

Summary

Abbreviations

• Define double distributions F^q and G^q as matrix elements of twist-2 quark operators:

$$P + \frac{\Delta}{2} \left| \bar{q}(0) \gamma^{\{\mu i \overset{\leftrightarrow}{\mathbf{D}}\mu_{1}} \dots i \overset{\leftrightarrow}{\mathbf{D}}\mu_{m} \}} q(0) \left| P - \frac{\Delta}{2} \right\rangle = \sum_{k=0}^{m} \binom{m}{k}$$

$$\left[F_{mk}^{q}(t)2P^{\{\mu}-G_{mk}^{q}(t)\Delta^{\{\mu\}}P^{\mu_{1}}\dots P^{\mu_{m-k}}\left(-\frac{\Delta}{2}\right)^{\mu_{m-k+1}}\dots\left(-\frac{\Delta}{2}\right)^{\mu_{mf}}\right]$$

$$F^{q}_{mk} = \int_{\Omega_{\rm DD}} \mathrm{d}\beta \mathrm{d}\alpha \, \alpha^{k} \beta^{m-k} F^{q}(\beta, \alpha)$$
$$G^{q}_{mk} = \int_{\Omega_{\rm DD}} \mathrm{d}\beta \mathrm{d}\alpha \, \alpha^{k} \beta^{m-k} G^{q}(\beta, \alpha)$$

52 / 131 H. Moutarde EJC 2022

Double Distributions. Relation to Generalized Parton Distributions.

Exclusive reactions as a nuclear manometer

Representation of GPD:

$$H^{q}(x,\xi,t) = \int_{\Omega_{\rm DD}} \mathrm{d}\beta \mathrm{d}\alpha \,\delta(x-\beta-\alpha\xi) \big(F^{q}(\beta,\alpha,t) + \xi G^{q}(\beta,\alpha,t)\big)$$

framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

Support property:
$$x \in [-1, +1]$$
.

- Discrete symmetries: F^q is α -even and G^q is α -odd.
- **Pobylitsa gauge**: any representation (F^q, G^q) can be recast in one representation with a single DD f^q :

$$H^{q}(x,\xi,t) = (1-x) \int_{\Omega_{\rm DD}} \mathrm{d}\beta \mathrm{d}\alpha \, f^{q}(\beta,\alpha,t) \delta(x-\beta-\alpha\xi)$$

\land Pobylitsa (2003)

🛆 Müller (2014)

Formalism: Radon transform.

< □ ▷ < ⑦ ▷ < 差 ▷ < 差 ▷ < 差 ▷ 差 ⊨ の Q (?)</p>
H. Moutarde | EJC 2022 | 53 / 131

Overlap representation. A first-principle connection with Light Front Wave Functions.

Exclusive reactions as a nuclear manometer

$$\langle H; P, \lambda \rangle = \sum_{N,\beta} \int [\mathrm{d}x \mathrm{d}\mathbf{k}_{\perp}]_N \psi_N^{(\beta,\lambda)}(x_1, \mathbf{k}_{\perp 1}, \dots, x_N, \mathbf{k}_{\perp N}) | \beta, k_1, \dots, k_N \rangle$$

Decompose an hadronic state $|H; P, \lambda\rangle$ in a Fock basis:

Reminder

Theoretical framework

Definition

Tomography

Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

• Derive an expression for the pion GPD in the DGLAP region $\xi \le x \le 1$:

$$H^{q}(x,\xi,t) \propto \sum_{\beta,j} \int [\mathrm{d}\bar{x}\mathrm{d}\bar{\mathbf{k}}_{\perp}]_{N} \delta_{j,q} \delta(x-\bar{x}_{j}) \big(\psi_{N}^{(\beta,\lambda)}\big)^{*} (\hat{x}',\hat{\mathbf{k}}_{\perp}') \psi_{N}^{(\beta,\lambda)}(\tilde{x},\tilde{\mathbf{k}}_{\perp})$$

with $\tilde{x}, \tilde{\mathbf{k}}_{\perp}$ (resp. $\hat{x}', \hat{\mathbf{k}}'_{\perp}$) generically denoting incoming (resp. outgoing) parton kinematics.

\land Diehl et al. (2001)

■ Similar expression in the ERBL region -ξ ≤ x ≤ ξ, but with overlap of N- and (N+2)-body LFWFs.

H. Moutarde | EJC 2022 | 54 / 131

Overlap representation. Advantages and drawbacks.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition

Tomography

Representations

Link to EMT

Experiments and evolution

Factorization Evolution Software ecosystem

Summary

Abbreviations

Physical picture.

• Positivity relations are fulfilled **by construction**.

Implementation of symmetries of N-body problems.

What is not obvious anymore

What is *not* obvious to see from the wave function representation is however the **continuity of GPDs at** $x = \pm \xi$ and the **polynomiality** condition. In these cases both the DGLAP and the ERBL regions must cooperate to lead to the required properties, and this implies **nontrivial relations between the wave functions** for the different Fock states relevant in the two regions. An *ad hoc* Ansatz for the wave functions would **almost certainly lead** to GPDs that **violate the above requirements**.

⁄ Diehl (2003)

Energy momentum form factors. Projection on the light cone.

Exclusive
reactions as a
nuclear
manometer

Question: How to access experimentally the energy momentum form factors?

Reminder

Theoretical framework

Definition

Tomography

Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

< □ ト < ⑦ ト < 差 ト < 差 ト 差 ⊨ のへで</p> H. Moutarde | EJC 2022 | 56 / 131

Energy momentum form factors. Projection on the light cone.

Question: How to access **experimentally** the energy Exclusive reactions as a momentum form factors? nuclear manometer Spin 2 probe: graviton?! Hopeless! Reminder Theoretical framework Definition Tomography Representations Link to EMT Experiments and evolution Factorization Evolution Software ecosystem Summary

Abbreviations

Energy momentum form factors. Projection on the light cone.

Exclusive reactions as a nuclear manometer

- Question: How to access experimentally the energy momentum form factors?
- Spin 2 probe: graviton?! Hopeless!
- Consider a **light-like** vector *n*:

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

$$\frac{\Delta}{2} \left| T_{q}^{\mu\nu}(0) \right| P - \frac{\Delta}{2} \right\rangle n_{\mu}n_{\nu} = \left\langle P + \frac{\Delta}{2} \right| \bar{q}\gamma^{\{\mu}i\overset{\leftrightarrow}{D}^{\nu\}}q - \eta^{\mu\nu}\mathcal{L}_{\rm QCD} \left| P - \frac{\Delta}{2} \right\rangle n_{\mu}n_{\nu}$$

< □ ト < ⑦ ト < 差 ト < 差 ト 差 ⊨ のへで</p>
H. Moutarde | EJC 2022 | 56 / 131

Cea

Energy momentum form factors. Projection on the light cone.

Exclusive reactions as a nuclear manometer

Question: How to access experimentally the energy momentum form factors?

- Spin 2 probe: graviton?! Hopeless!
- Consider a **light-like** vector *n*:

Reminder Theoretica

framework

Definition Tomography

Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

$$\frac{\Delta}{2} \left| T_{q}^{\mu\nu}(0) \right| P - \frac{\Delta}{2} \right\rangle n_{\mu}n_{\nu} = \left\langle P + \frac{\Delta}{2} \right| \bar{q}\gamma^{\{\mu}i\overset{\leftrightarrow}{\mathrm{D}}^{\nu\}}q - \eta^{\mu\nu}\mathcal{L}_{\mathrm{QCD}} \left| P - \frac{\Delta}{2} \right\rangle n_{\mu}n_{\nu}$$

• Terms asymmetric w.r.t. $\mu \leftrightarrow \nu$ vanish after contraction with $n_{\mu}n_{\nu}$ (notation $\Delta^{+} \equiv -2\xi P^{+}$): $\frac{1}{P^{+2}} \left\langle P + \frac{\Delta}{2} \middle| \bar{q}(0)\gamma^{(\mu}i\overset{\leftrightarrow}{D}^{\nu)}q(0) \middle| P - \frac{\Delta}{2} \right\rangle n_{\mu}n_{\nu} = \bar{u}\left(P + \frac{\Delta}{2}\right)$

$$\frac{A_q(t) + 4\xi^2 C_q(t)}{M} + \left(A_q(t) + B_q(t)\right) i \frac{\sigma^{+\lambda} \Delta_{\lambda}}{2MP^+} \right] u \left(P - \frac{\Delta}{2}\right)$$

< □ > < ⑦ > < 差 > < 差 > < 差 > 差 = 少 Q ○
H. Moutarde | EJC 2022 | 56 / 131

Cea

Energy momentum form factors. Projection on the light cone.

Exclusive reactions as a nuclear manometer

- Question: How to access experimentally the energy momentum form factors?
- Spin 2 probe: graviton?! Hopeless!
- Consider a **light-like** vector *n*:

Reminder Theoretical framework

Definition

Tomography

Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

$$\frac{\Delta}{2} \left| T_{q}^{\mu\nu}(0) \right| P - \frac{\Delta}{2} \right\rangle n_{\mu}n_{\nu} = \left\langle P + \frac{\Delta}{2} \right| \bar{q}\gamma^{\{\mu}i\overset{\leftrightarrow}{\mathbf{D}}^{\nu\}}q - \eta^{\mu\nu}\mathcal{L}_{\text{QCD}} \left| P - \frac{\Delta}{2} \right\rangle n_{\mu}n_{\nu}$$

• Terms asymmetric w.r.t. $\mu \leftrightarrow \nu$ vanish after contraction with $n_{\mu}n_{\nu}$ (notation $\Delta^+ \equiv -2\xi P^+$):

$$\frac{1}{P^{+2}} \left\langle P + \frac{\Delta}{2} \middle| \bar{q}(0) \gamma^{\{\mu} i D^{\nu\}} q(0) \middle| P - \frac{\Delta}{2} \right\rangle n_{\mu} n_{\nu} = \bar{u} \left(P + \frac{\Delta}{2} \right) \\ \times \left[\frac{A_q(t) + 4\xi^2 C_q(t)}{M} + \left(A_q(t) + B_q(t) \right) i \frac{\sigma^{+\lambda} \Delta_{\lambda}}{2MP^+} \right] u \left(P - \frac{\Delta}{2} \right)$$

■ Restrict to symmetric components of EMT (=) =) a components (I =) A COMPACT (I =) A COMPACT

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition

Tomography

Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

<u>Reminder</u>: Energy momentum tensor

$$\frac{1}{P^{+2}} \left\langle P + \frac{\Delta}{2} \middle| \bar{q}(0) \gamma^{\{+} i \overset{\leftrightarrow}{\mathbf{D}}^{+\}} q(0) \middle| P - \frac{\Delta}{2} \right\rangle = \bar{u} \left(P + \frac{\Delta}{2} \right)$$

$$\left\langle \left[\frac{\mathbf{A}_{q}(t) + 4\xi^{2} \mathbf{C}_{q}(t)}{M} + \left(\mathbf{A}_{q}(t) + \mathbf{B}_{q}(t) \right) i \frac{\sigma^{+\lambda}}{P^{+}} \frac{\Delta_{\lambda}}{2M} \right] u \left(P - \frac{\Delta}{2} \right)$$

< □ > < ⑦ > < ミ > < ミ > ミ = シ へ ?
H. Moutarde | EJC 2022 | 57 / 131

Exclusive reactions as a nuclear manometer

P

X

Reminder

Theoretical framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization Evolution Software ecosystem

Summary

Abbreviations

$$\frac{1}{2}\left\langle P + \frac{\Delta}{2} \middle| \bar{q}(0)\gamma^{\{+}i\overset{\leftrightarrow}{\mathbf{D}}^{+\}}q(0) \middle| P - \frac{\Delta}{2} \right\rangle = \bar{u}\left(P + \frac{\Delta}{2}\right)$$
$$\left[\frac{A_{q}(t) + 4\xi^{2}C_{q}(t)}{M} + \left(A_{q}(t) + B_{q}(t)\right)i\frac{\sigma^{+\lambda}}{P^{+}}\frac{\Delta_{\lambda}}{2M}\right]u\left(P - \frac{\Delta}{2}\right)$$

Compute GPDs Mellin moment of order 1:

Reminder: Energy momentum tensor

$$\frac{1}{P^{+}}\bar{u}(p')\left[\int \mathrm{d}x \, x H^{q}(x,\xi,t)\gamma^{+} + \int \mathrm{d}x \, x E^{q}(x,\xi,t) \frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2M}\right] u(p)$$
$$= \int \frac{dz^{-}}{2\pi} \int \mathrm{d}x \, x e^{ixP^{+}z^{-}} \langle p' \left| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+}q \left(\frac{z}{2} \right) \right| p \rangle_{z^{+}=0,z_{\perp}=0}$$

Exclusive reactions as a nuclear manometer

P

 \times

Reminder

Theoretical framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization Evolution Software ecosystem

Summary

Abbreviations

$$\frac{1}{4+2}\left\langle P + \frac{\Delta}{2} \middle| \, \bar{q}(0)\gamma^{\{+}i\overset{\leftrightarrow}{\mathbf{D}}^{+\}}q(0) \middle| P - \frac{\Delta}{2} \right\rangle = \bar{u}\left(P + \frac{\Delta}{2}\right)$$
$$\left[\frac{A_{q}(t) + 4\xi^{2}C_{q}(t)}{M} + \left(A_{q}(t) + B_{q}(t)\right)i\frac{\sigma^{+\lambda}}{P^{+}}\frac{\Delta_{\lambda}}{2M}\right]u\left(P - \frac{\Delta}{2}\right)$$

Compute GPDs Mellin moment of order 1:

Reminder: Energy momentum tensor

$$\bar{u}(p') \left[\int \mathrm{d}x \, x \mathcal{H}^{q}(x,\xi,t) \frac{1}{M} + \int \mathrm{d}x \, x (\mathcal{H}^{q} + \mathcal{E}^{q})(x,\xi,t) \frac{i\sigma^{+\lambda} \Delta_{\lambda}}{2MP^{+}} \right] u(p) \\ = \int \frac{dz^{-}}{2\pi} \int \mathrm{d}x \, x e^{ixP^{+}z^{-}} \langle p' \left| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} q \left(\frac{z}{2} \right) \right| p \rangle_{z^{+}=0, z_{\perp}=0}$$

Exclusive reactions as a nuclear manometer

P

 \times

 $\overline{u}(p')$

J

Reminder

Theoretical framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization Evolution Software ecosystem

Summary

Abbreviations

$$\frac{1}{1+2}\left\langle P + \frac{\Delta}{2} \middle| \, \bar{q}(0)\gamma^{\{+}i\overset{\leftrightarrow}{\mathbf{D}}^{+\}}q(0) \middle| P - \frac{\Delta}{2} \right\rangle = \bar{u}\left(P + \frac{\Delta}{2}\right)$$
$$\left[\frac{A_{q}(t) + 4\xi^{2}C_{q}(t)}{M} + \left(A_{q}(t) + B_{q}(t)\right)i\frac{\sigma^{+\lambda}}{P^{+}}\frac{\Delta_{\lambda}}{2M}\right]u\left(P - \frac{\Delta}{2}\right)$$

Compute GPDs Mellin moment of order 1:

Reminder: Energy momentum tensor

$$\left[\int \mathrm{d}x x \mathcal{H}^{q}(x,\xi,t) \frac{1}{M} + \int \mathrm{d}x x (\mathcal{H}^{q} + \mathcal{E}^{q})(x,\xi,t) \frac{i\sigma^{+\lambda} \Delta_{\lambda}}{2MP^{+}}\right] u(p) \\ \int \frac{dz^{-}}{2\pi} 2\pi (-i) \delta'(\mathcal{P}^{+}z^{-}) \langle p' \left| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} q \left(\frac{z}{2} \right) \right| p \rangle_{z^{+}=0,z_{\perp}=0} \right]$$

Exclusive reactions as a nuclear manometer

D-

 \times

Reminder

Theoretical framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization Evolution Software ecosystem

Summary

Abbreviations

$$\frac{1}{P^2} \left\langle P + \frac{\Delta}{2} \middle| \bar{\mathbf{q}}(0) \gamma^{\{+} i \overset{\leftrightarrow}{\mathbf{D}}^{+\}} \mathbf{q}(0) \middle| P - \frac{\Delta}{2} \right\rangle = \bar{u} \left(P + \frac{\Delta}{2} \right)$$
$$\frac{1}{M} \frac{\mathbf{A}_{\mathbf{q}}(t) + 4\xi^2 \mathbf{C}_{\mathbf{q}}(t)}{M} + \left(\mathbf{A}_{\mathbf{q}}(t) + \mathbf{B}_{\mathbf{q}}(t) \right) i \frac{\sigma^{+\lambda}}{P^+} \frac{\Delta_{\lambda}}{2M} \right] u \left(P - \frac{\Delta}{2} \right)$$

Compute GPDs Mellin moment of order 1:

Reminder: Energy momentum tensor

 $\bar{u}(p') \left[\int \mathrm{d}x \, x \mathcal{H}^{q}(x,\xi,t) \frac{1}{M} + \int \mathrm{d}x \, x (\mathcal{H}^{q} + \mathcal{E}^{q})(x,\xi,t) \frac{i\sigma^{+\lambda} \Delta_{\lambda}}{2MP^{+}} \right] u(p) \\ = \frac{-i}{\mathcal{P}^{+2}} \int dz^{-} \delta'(z^{-}) \langle p' \left| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} q \left(\frac{z}{2} \right) \right| p \rangle_{z^{+}=0, z_{\perp}=0}$

← □ ト ← ⑦ ト ← 臣 ト ← 臣 ト 三日 つ へ ()
H. Moutarde | EJC 2022 | 57 / 131

Exclusive reactions as a nuclear manometer

P

X

Reminder

Theoretical framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization Evolution Software ecosystem

Summary

Abbreviations

$$\frac{1}{42}\left\langle P + \frac{\Delta}{2} \middle| \bar{q}(0)\gamma^{\{+}i\overset{\leftrightarrow}{\mathbf{D}}^{+\}}q(0) \middle| P - \frac{\Delta}{2} \right\rangle = \bar{u}\left(P + \frac{\Delta}{2}\right)$$
$$\left[\frac{A_{q}(t) + 4\xi^{2}C_{q}(t)}{M} + \left(A_{q}(t) + B_{q}(t)\right)i\frac{\sigma^{+\lambda}}{P^{+}}\frac{\Delta_{\lambda}}{2M}\right]u\left(P - \frac{\Delta}{2}\right)$$

Compute GPDs Mellin moment of order 1:

Reminder: Energy momentum tensor

 $\bar{u}(p') \left[\int \mathrm{d}x \, x \mathcal{H}^{q}(x,\xi,t) \frac{1}{M} + \int \mathrm{d}x \, x (\mathcal{H}^{q} + \mathcal{E}^{q})(x,\xi,t) \frac{i\sigma^{+\lambda} \Delta_{\lambda}}{2MP^{+}} \right] u(p) \\ = \frac{-i}{P^{+2}} \int dz^{-} \delta'(z^{-}) \langle p' \left| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} q \left(\frac{z}{2} \right) \right| p \rangle_{z^{+}=0, z_{\perp}=0}$

《□ 》 《□ 》 《 □ 》 《 □ 》 《 □ 》 《 □ 》 《 □ 》 《 ○
H. Moutarde | EJC 2022 | 57 / 131

Exclusive reactions as a nuclear manometer

D-

 \times

Reminder

Theoretical framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization Evolution Software ecosystem

Summary

Abbreviations

$$\frac{1}{2}\left\langle P + \frac{\Delta}{2} \middle| \bar{q}(0)\gamma^{\{+}i\overset{\leftrightarrow}{\mathbf{D}}^{+\}}q(0) \middle| P - \frac{\Delta}{2} \right\rangle = \bar{u}\left(P + \frac{\Delta}{2}\right)$$
$$\frac{1}{2}\left[\frac{A_{q}(t) + 4\xi^{2}C_{q}(t)}{M} + \left(A_{q}(t) + B_{q}(t)\right)i\frac{\sigma^{+\lambda}}{P^{+}}\frac{\Delta_{\lambda}}{2M}\right]u\left(P - \frac{\Delta}{2}\right)$$

Compute GPDs Mellin moment of order 1:

Reminder: Energy momentum tensor

$$\begin{split} \bar{u}(p') \left[\int \mathrm{d}x \, x \mathcal{H}^{q}(x,\xi,t) \frac{1}{M} + \int \mathrm{d}x \, x (\mathcal{H}^{q} + \mathcal{E}^{q})(x,\xi,t) \frac{i\sigma^{+\lambda} \Delta_{\lambda}}{2MP^{+}} \right] u(p) \\ &= \frac{+i}{P^{+2}} \frac{\partial}{\partial z^{-}} \langle p' \left| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} q \left(\frac{z}{2} \right) \right| p \rangle_{|z=0} \end{split}$$

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

 \times

ū(

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization Evolution Software ecosystem

Summary

Abbreviations

$$\frac{1}{42}\left\langle P + \frac{\Delta}{2} \middle| \bar{q}(0)\gamma^{\{+}i\overset{\leftrightarrow}{\mathbf{D}}^{+\}}q(0) \middle| P - \frac{\Delta}{2} \right\rangle = \bar{u}\left(P + \frac{\Delta}{2}\right)$$
$$\left[\frac{A_{q}(t) + 4\xi^{2}C_{q}(t)}{M} + \left(A_{q}(t) + B_{q}(t)\right)i\frac{\sigma^{+\lambda}}{P^{+}}\frac{\Delta_{\lambda}}{2M}\right]u\left(P - \frac{\Delta}{2}\right)$$

Compute GPDs Mellin moment of order 1:

Reminder: Energy momentum tensor

$$\begin{split} &(p') \left[\int \mathrm{d}x \, x \mathcal{H}^{q}(x,\xi,t) \frac{1}{M} + \int \mathrm{d}x \, x (\mathcal{H}^{q} + \mathcal{E}^{q})(x,\xi,t) \frac{i\sigma^{+\lambda} \Delta_{\lambda}}{2MP^{+}} \right] u(p) \\ &= \left. \frac{1}{P^{+2}} \langle p' \left| \bar{q}\left(0\right) \gamma^{+} i \overset{\leftrightarrow}{\mathbf{D}}^{+} q\left(0\right) \right| p \rangle \end{split}$$

Exclusive reactions as a nuclear manometer

P

 \times

Reminder

Theoretical framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization Evolution Software ecosystem

Summary

Abbreviations

$$\frac{1}{2}\left\langle P + \frac{\Delta}{2} \middle| \bar{q}(0)\gamma^{\{+}i\overset{\leftrightarrow}{\mathbf{D}}^{+\}}q(0) \middle| P - \frac{\Delta}{2} \right\rangle = \bar{u}\left(P + \frac{\Delta}{2}\right)$$
$$= \frac{A_{q}(t) + 4\xi^{2}C_{q}(t)}{M} + \left(A_{q}(t) + B_{q}(t)\right)i\frac{\sigma^{+\lambda}}{P^{+}}\frac{\Delta_{\lambda}}{2M} \right] u\left(P - \frac{\Delta}{2}\right)$$

Compute GPDs Mellin moment of order 1:

Reminder: Energy momentum tensor

$$\begin{split} \bar{u}(p') \left[\int \mathrm{d}x \, x \mathcal{H}^{q}(x,\xi,t) \frac{1}{M} + \int \mathrm{d}x \, x (\mathcal{H}^{q} + \mathcal{E}^{q})(x,\xi,t) \frac{i\sigma^{+\lambda} \Delta_{\lambda}}{2MP^{+}} \right] u(p) \\ &= \left. \frac{1}{P^{+2}} \langle p' \left| \bar{q}\left(0\right) \gamma^{\{+} i \overset{\leftrightarrow}{\mathbf{D}}^{+\}} q\left(0\right) \right| p \rangle \end{split}$$

← □ ト ← ⑦ ト ← 玉 ト ← 玉 ト 三 □ = つ へ ○
H. Moutarde | EJC 2022 | 57 / 131

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition Tomography

Representations

Link to EMT

Experiments and evolution

Factorization Evolution

Software ecosystem

Summary

Abbreviations

$\frac{1}{P^{+2}} \left\langle P + \frac{\Delta}{2} \middle| \bar{q}(0)\gamma^{\{+i\overset{\leftrightarrow}{\mathbf{D}}^+\}} q(0) \middle| P - \frac{\Delta}{2} \right\rangle = \bar{u} \left(P + \frac{\Delta}{2} \right) \\ \times \left[\frac{\mathbf{A}_{q}(t) + 4\xi^{2} \mathbf{C}_{q}(t)}{M} + \left(\mathbf{A}_{q}(t) + \mathbf{B}_{q}(t) \right) i \frac{\sigma^{+\lambda}}{P^{+}} \frac{\Delta_{\lambda}}{2M} \right] u \left(P - \frac{\Delta}{2} \right)$

Compute GPDs Mellin moment of order 1:

Reminder: Energy momentum tensor

$$\begin{split} \bar{u}(p') \left[\int \mathrm{d}x \, x \mathcal{H}^{q}(x,\xi,t) \frac{1}{M} + \int \mathrm{d}x \, x (\mathcal{H}^{q} + \mathcal{E}^{q})(x,\xi,t) \frac{i\sigma^{+\lambda} \Delta_{\lambda}}{2MP^{+}} \right] u(p) \\ &= \left. \frac{1}{P^{+2}} \langle \mathcal{P} + \frac{\Delta}{2} \left| \bar{q}\left(0\right) \gamma^{\{+i\overset{\leftrightarrow}{\mathrm{D}}^{+\}}} q\left(0\right) \right| \mathcal{P} - \frac{\Delta}{2} \rangle \end{split}$$

← □ ト ← ⑦ ト ← 玉 ト ← 玉 ト 三 □ = つ へ ○
H. Moutarde | EJC 2022 | 57 / 131

Connection to experimental data.

Gravitational form factors from generalized parton distributions.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

DVCS

X +

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

Connection to experimental data.

factorization μ_F

Gravitational form factors from generalized parton distributions.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

DVCS

X +

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

 R_{\perp}

Impact

parameter b_{\perp}

Connection to experimental data.

Gravitational form factors from generalized parton distributions.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

Connection to experimental data.

Gravitational form factors from generalized parton distributions.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

Preliminary summary. From the EMT to GPDs.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

- Mellin moments $\int dx x^n H(x, \xi, t)$ are polynomials of degree $\leq n+1$ for the GPDs *H* and *E*.
- The terms of highest degrees generate the **D-term**.
- The term of highest degree of first Mellin moment $\int dx x H(x, \xi, t)$ of the GPD *H* is proportional to the GFF *C*.
- GPD measurements allow an **experimental access** to the EMT.
- The D-term plays a specific role in this strategy.

← □ ト ← ⑦ ト ← 臣 ト ← 臣 ト 三日 つ へ ○
H. Moutarde | EJC 2022 | 59 / 131

Exclusive processes of current interest. Factorization, universality and event distributions.

Exclusive reactions as a nuclear manometer

DVCS

factorization

X -

Reminder

Theoretical framework

Definition

Tomography

Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

🛆 Moutarde *et al*. (2019)

Exclusive processes of current interest. Factorization, universality and event distributions.

Exclusive reactions as a nuclear manometer

Perturbative

Nonperturbative

X -

Reminder

Theoretical framework

Definition
Tomography
Representatio

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

\bowtie Moutarde *et al.* (2019)

▲□ ▶ ▲ ∃ ▶ ▲ ∃ ▶ □ ∃ ■ ● ● ● ● H. Moutarde EJC 2022 60 / 131

Exclusive processes of current interest. Factorization, universality and event distributions.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition Tomography Representations

Link to EMT

Experiments and evolution

Factorization Evolution Software ecosystem

Summary

Abbreviations

Perturbative

Nonperturbative

▲ Moutarde et al. (2019)

Exclusive processes of current interest. Factorization, universality and event distributions.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition Tomography Representations

Link to EMT

Experiments and evolution

Factorization Evolution Software ecosystem

Summary

Abbreviations

Perturbative

Nonperturbative

🛆 Moutarde *et al.* (2019)

Exclusive processes of current interest. Factorization, universality and event distributions.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition Tomography Representations

Link to EMT

Experiments and evolution

Factorization Evolution Software ecosystem

Summary

Abbreviations

🛆 Moutarde *et al.* (2019)

Exclusive processes of current interest. Factorization, universality and event distributions.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition Tomography Representations

Link to EMT

Experiments and evolution

Factorization Evolution Software ecosystem

Summary

Abbreviations

🛆 Moutarde *et al.* (2019)

An aside on renormalisation. Scale dependence.

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

- Each radiative corrections has to be taken into account once and only once.
- Interpretation depends on scale.

Need for evolution. Scale dependence in a few words.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

- The renormalization of operators defining GPDs requires the introduction of a **factorization scale**.
- This choice defines what is meant by short and large distance.
- This choice is arbitrary and observable quantities do not depend on this scale.
- This remark is materialized through linear differential equations called **evolution equations**.
- The kernel of this equations is computed order by order in perturbative QCD.

From CFFs to GPDs.

Can we actually recover a GPD from the knowledge of a CFF?!

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

- Definition
- Tomography
- Representations
- Link to EMT

Experiments and evolution

- Factorization
- Evolution
- Software ecosystem
- Summary
- Abbreviations

Assume CFF \mathcal{H} is perfectly known. Solve inverse problem?

$$\mathcal{H}^{q}(\xi, Q^{2}) = \int_{-1}^{1} \frac{\mathrm{d}x}{\xi} T^{q}\left(\frac{x}{\xi}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}(\mu^{2})\right) H^{q}(x, \xi, \mu^{2})$$

 Question raised about 20 years ago and has remained essentially open. Evolution proposed as a crucial element.

 P Freund (2000)

- There exist non-zero GPDs with vanishing forward limit and vanishing CFF up to order α²_s.
- The DVCS deconvolution problem is **ill-posed**.

🖉 Bertone *et al*. (2021)

- Same conclusion holds for several other hard exclusive processes.
- Define and implement further criterions in fitting strategies to select one solution among infinitely many.

Ces

Computing chain design. EIC perspective considered at the time of design.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition Tomography Representations Link to EMT

Experiments and evolution

Factorization Evolution

Software ecosystem

Summary

Abbreviations

Full processes Experimental data and phenomenology

Small distance Computation of amplitudes

Large distance First principles and fundamental parameters

PARtonic Tomography Of Nucleon Software

- Perturbative approximations.
- Physical models.

Fits.

- Numerical methods.
- Accuracy and speed.

▲ Berthou et a L. > (2015) H. Moutarde | EJC 2022 | 64 / 131

Generic exclusive event generators EpIC. Modular structure compatible with the architecture of PARTONS.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition Tomography Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

- Includes treatment of radiative corrections.
- Can be extended to simulate other exclusive processes.
- Already used in the EIC community and run at BNL.
- Publicly released simultaneously with PARTONSv3.

CC2		Y Search GitLab	a Den 190+ ca	🚥 o [‡] - 🏐 -				
SD epic	monta carlo > 🛞 epic							
Project information Repository Inscess (0) Inscess (0) findeparequests (0) Goodyneets Deployments Deployments Monster Amotory	• Price 0 100 cmm 0.0 <							
난 Analytics	Pawei sznajder sutnored s days a	0s						
I wie	READWE CI/CD configuration	Add LICENSE Add CHANGELOG	Auto Dev	Ops enabled				
	Name	Last commit		Last update				
	externalToolBuilders	something Eclipse related trash		8 months ago				
	En .settings	Testing the MC		8 months ago				
	da bis	charge name		8 months ago				
	E build	add PARTONS interface		8 months ago				
& Collapse sidebar	Eu creatos	add versioning		7 months ago				

Generic exclusive event generators EpIC. Modular structure compatible with the architecture of PARTONS.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

- Definition Tomography Representations
- Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

- Includes treatment of radiative corrections.
- Can be extended to simulate other exclusive processes.
- Already used in the EIC community and run at BNL.
- Publicly released simultaneously with PARTONSv3.

\land Aschenauer et al. (2022)

Generic exclusive event generators EpIC. Modular structure compatible with the architecture of PARTONS.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

- Definition Tomography
- Representations
- Link to EMT

Experiments and evolution

- Factorization
- Evolution
- Software ecosystem
- Summary
- Abbreviations

- Includes treatment of radiative corrections.
- Can be extended to simulate other exclusive processes.
- Already used in the EIC community and run at BNL.
- Publicly released simultaneously with PARTONSv3.

▲ Aschenauer et al. (2022)

OF LA RECAERCAE À L'INDUST

GPD evolution with APFEL++. Connecting different computing codes for hadron structure.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition Tomography Representations Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

Evolution code for PDFs, GPDs and TMDs.

- APFEL++ numerically solves evolution equations in *x*-space.
- Fully modular.
- Heavy quark threshold crossing.

A PDF evolution library in C++

Introduction

BEADNE md

APELLs is a Lc - renting of the Fortan 77 existinc cosh APELL, hences, APELLs is based on completally new code dairy and paratrass based there performed analysis of the more spinin emmoy management. The new modular situation allows to better mathatability and easier estemblist, The module and APELs - unables for aired range of tables (not them is adduced for the DAL evolution aparticity to more compare, comparison, such and dimensional semi-inclusion DS and Dall-Yean cross sections, are easily implementable APELs.

APFEL+ is used as a prediction range in NangaPrindia, a code devoted to the extraction of Traverse-Momentum-Dependence (TMO) distributions, and a Montilline, a code schema dedicated to the deterministic of colliver distributions, APFEL+ is also currently interfaced to AMF0105, a software dedicated to the partnermentogol gradient distributions (GPO) and TMI, and to SFBur, an open source IR framework devoted to the extraction of collinear distributions and to the assessment of the impact of new reprintment of the impact of new momentum distributions and to the assessment of the impact of new reprintment of the impact of new momentum distributions and to the assessment of the impact of new reprintment distributions.

Languages

C++ 51.4%
 Fortran 48.3%
 Other 0.3%

▲ Bertone et al. (2022)

← □ ト ← ⑦ ト ← 臣 ト ← 臣 ト 三日 つ へ ○
H. Moutarde | EJC 2022 | 66 / 131

GPD evolution with APFEL++. Connecting different computing codes for hadron structure.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

▲ Bertone *et al.* (2022) < □ > < ④ > < ≥ > < ≥ > < ≥ > ≥ = < ⊃ < ⊙ H. Moutarde | EJC 2022 | 66 / 131

GPD evolution with APFEL++. Connecting different computing codes for hadron structure.

▲ Bertone *et al.* (2022) < □> < @> < ≥> < ≥> < ≥> ≥ = < ○へ @ H. Moutarde | EJC 2022 | 66 / 131

GPD evolution with APFEL++. Connecting different computing codes for hadron structure.

Exclusive reactions as a nuclear manometer

Reminder

Theoretical framework

Definition

Tomography Representations

Link to EMT

Experiments and evolution

Factorization

Evolution

Software ecosystem

Summary

Abbreviations

▲ Bertone et al. (2022) <□><</p>
← □><</p>
← □><</p>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
← □>
←

Summary

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

What is the proton internal pressure? Refining the concepts.

Abbreviations

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

Abbreviations used in this part.

Exclusive reactions as a nuclear manometer

DD

Reminder

Theoretical framework

Definition Tomography Representations Link to EMT

Experiments and evolution

Factorization Evolution Software ecosystem

Summary

APFEI a PDF evolution library CFF Compton form factor double distribution DGI AP Dokshitzer-Gribov-Lipatov-Altarelli-Parisi DVCS deeply virtual Compton scattering DVMP deeply virtual meson production FFF elastic form factor ERBL Efremov-Radyushkin-Brodsky-Lepage GFF gravitational form factor GPD generalized parton distribution I FWF light front wave function TCS timelike Compton scattering

> (日本) H. Moutarde EJC 2022 70 / 131

Tuesday 6 Sep. 2022 10:00 - 11:00

Part III Deeply virtual Compton scattering

Scattering processes sensitive to generalized parton distributions.

<□▶ <⊡▶ <≧▶

What is the proton internal pressure? Refining the concepts.

OF LA RECARDAR À L'INDUSTRI

Exclusive processes of current interest. Factorization and kinematic restrictions.

Exclusive reactions as a nuclear manometer

Reminder

Experimen data

Kinematics Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle Systematics

Summary

Abbreviations

- Factorization requires one large scale.
- Here $Q^2 \gg |t|, M^2, \dots$
- Consequences on kinematic settings.

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle Systematics

Summary

Abbreviations

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle Systematics

Summary

Abbreviations

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle Systematics

Summary

Abbreviations

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle Systematics

Summary

Abbreviations

OF LA RECARDAR À L'INDUSTRI

Almost all existing DVCS data sets. 2600+ measurements of 30 observables published during 2001-17.

Exclusive	No.	Collab.	Year	Ref.	Observable		Kinematic dependence	No. of points used / all
eactions as a	1	HERMES	2001	40	A_{LU}^+		ϕ	10 / 10
nuclear	2		2006	41	$A_C^{\cos i\phi}$	i = 1	t	4/4
nanometer	3		2008	42	$A_C^{\cos i\phi}$	i=0,1	$x_{\rm Bj}$	18 / 24
					$A_{UT,DVCS}^{\sin(\phi-\phi_S)\cos i\phi}$	i = 0		
					$A_{UT,I}^{\sin(\phi-\phi_S)\cos i\phi}$	i = 0, 1		
					$A_{UT,I}^{\cos(\phi-\phi_S)\sin i\phi}$	i = 1		
minder	4		2009	43	$A_{LU,I}^{\sin i\phi}$	i = 1, 2	$x_{\rm Bj}$	35 / 42
					$A_{LUDVCS}^{\sin i\phi}$	i = 1		
perimental					$A_C^{\cos i\phi}$	i=0,1,2,3		
ta	5		2010	44	$A_{UL}^{+,\sin i\phi}$	i=1,2,3	$x_{\rm Bj}$	18 / 24
nematics				_	$A_{LL}^{+,\cos i\phi}$	i=0,1,2		
interior form	6		2011	45	$A_{LT,DVCS}^{\cos(\phi-\phi_S)\cos i\phi}$	i = 0, 1	$x_{\rm Bj}$	24 / 32
tors					$A_{LT,DVCS}^{\sin(\phi-\phi_S)\sin i\phi}$	i = 1		
					$A_{LT,I}^{\cos(\phi-\phi_S)\cos i\phi}$	i=0,1,2		
spersion					$A_{LT,I}^{\sin(\phi - \phi_S) \sin i\phi}$	i = 1, 2		
ations	7		2012	46	$A_{LU,I}^{\sin i\phi}$	i = 1, 2	$x_{\rm Bj}$	35 / 42
					$A_{LU,DVCS}^{\sin i\phi}$	i = 1		
alytic properties					$A_C^{\cos i\phi}$	i = 0, 1, 2, 3		
btraction constant	8	CLAS	2001	47	$A_{LU}^{-,\sin i\phi}$	i = 1, 2		0 / 2
	9		2006	48	$A_{UL}^{-,\sin i\phi}$	i = 1, 2	_	2 / 2
obal fit	10		2008	49	A_{LU}^-		ϕ	283 / 737
raction of CFFs	11		2009	50	A_{LU}^-		φ	22 / 33
sulte	12		2015	51	$A_{LU}, A_{UL}^-, A_{LL}^-$		φ	311 / 497
	13	11-11 A	2015	32	a* 0 UU		φ	1333 / 1933
cessing	14	riail A	2015	34	$\Delta a^{-\sigma} LU$ $\Delta d^{4} \sigma^{-}$		φ	220 / 228
Fe	15	COMPASS	2018	36	$d^3\sigma^{\pm}_{LU}$		τ t	2/4
13	10	ZEUS	2009	37	$d^3\sigma^+_{UU}$		t	4/4
inciple	18	H1	2005	38	$d^3\sigma^+_{III}$		t	7/8
stematics	19		2009	39	$d^3\sigma_{UU}^{4U}$		t	12 / 12
mmary							SUM:	2624 / 3996
breviations						A Mo	utarde	et al
					H.	Moutarde	EJC 20	22 75 /

Almost all existing DVCS data sets. 2600+ measurements of 30 observables published during 2001-17.

Compton Form Factors. DVCS amplitude in the Bjorken regime.

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle

Systematics

Summary

Abbreviations

Bjorken regime : large ${\it Q}^2$ and fixed ${\it xB}\simeq 2\xi/(1+\xi)$

- Partonic interpretation relies on factorization theorems.All-order proofs for DVCS.
- GPDs depend on a (arbitrary) factorization scale μ_F .
- **Consistency** requires the study of **different channels**.

GPDs enter DVCS through Compton Form Factors :

$$\mathcal{F}(\xi, t, Q^2) = \int_{-1}^{1} \mathrm{d}x \, T\left(x, \xi, \alpha_{\mathcal{S}}(\mu_F), \frac{Q}{\mu_F}\right) F(x, \xi, t, \mu_F)$$

for a given GPD F.

Kernels T derived at NLO and (partially) NNLO.

🛆 Belitsky and Müller (1998)

\land Braun et al. (2022)

■ CFF *F* is a complex function.

H. Moutarde EJC 2022 76 / 131

cea

Compton scattering beyond leading order. Scattering amplitudes and their partonic interpretation.

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties

Subtraction constant

Global fit

Extraction of CFFs

Results

Accessing GFFs

Principle

Systematics

Summary

Abbreviations

Compton Form Factors (CFF)

Parametrize amplitudes.

< □ ト < ⑦ ト < 差 ト < 差 ト 差 声 の Q ペ</p> H. Moutarde | EJC 2022 | 77 / 131
DE LA RECALICAE À L'INDUSTRI

Compton scattering beyond leading order. Scattering amplitudes and their partonic interpretation.

DE LA RECHERCHE À L'INDUSTRI

Compton scattering beyond leading order. Scattering amplitudes and their partonic interpretation.

OF LA RECHERCHE À L'INDUSTRI

Compton scattering beyond leading order. Scattering amplitudes and their partonic interpretation.

Explicit expressions of CFFs. Quark and gluon contributions to H at LO and NLO (fixed t).

$$\mathcal{H}_{q}(\xi, Q^{2})$$

$$= \int_{-1}^{+1} dx H_q^+(x,\xi,\mu_F) T_q\left(x,\xi,\alpha_S(\mu_F),\frac{Q}{\mu_F}\right) \\ + \int_{-1}^{+1} dx H_g(x,\xi,\mu_F) T_g\left(x,\xi,\alpha_S(\mu_F),\frac{Q}{\mu_F}\right)$$

• Convolution of singlet GPD $H_a^+(x) \equiv H_a(x) - H_a(-x)$:

▲ Belistky and Müller (1998)

\land Pire et al. (2011)

< □ ト < ⑦ ト < 差 ト < 差 ト 差 声 の Q ペ</p>
H. Moutarde | EJC 2022 | 78 / 131

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties

Subtraction constant

Global fit

Extraction of CFFs

Results

Accessing GFFs

Principle

Systematics

Summary

Abbreviations

m

Re Ex

> Kir Co fac

An

Res Ac GF Pri

Explicit expressions of CFFs. Quark and gluon contributions to \mathcal{H} at LO and NLO (fixed t).

Exclusive
reactions as a
nuclear
manometer

$$H_q(\xi, Q^2) \stackrel{\text{LO}}{=} \int_{-1}^{+1} dx H_q^+(x, \xi, \mu_F) C_0^q(x, \xi)$$

Reminder
Experimental
data
Kinematics
Compton from
relations
Analytic properties
Subtraction of CFs
Results
Global fit
Extraction of CFs
Results
 $Im \mathcal{H}_q(\xi, Q^2) \stackrel{\text{LO}}{=} \pi H_q^+(\xi, \xi, \mu_F)$
Accessing
GFFs
Principle
Systematics
Summary
Abbreviations
 $(\Box \to \langle \overline{\sigma} \rangle \star [\Xi \to \langle \overline{\sigma} \rangle, \Xi] \equiv \langle \overline{\sigma} \rangle \langle \overline{\sigma} \rangle$

reac

Rem

data Kinen Comp

factor Disp

relat Analy Subtr Glob Extra Resul Acce GEE Princi Syste Sum

n ma

Explicit expressions of CFFs. Quark and gluon contributions to \mathcal{H} at LO and NLO (fixed t).

Exclusive
reactions as a
nuclear
manometer

$$\mathcal{H}_{q}(\xi, Q^{2}) \stackrel{\text{NLO}}{=} \int_{-1}^{+1} dx \, \mathcal{H}_{q}^{+}(x, \xi, \mu_{F}) \left[C_{0}^{q} + C_{1}^{q} + \frac{1}{2} \ln \frac{|Q^{2}|}{\mu_{F}^{2}} C_{C}^{q} + C_{1}^{q} + \frac{1}{2} \ln \frac{|Q^{2}|}{\mu_{F}^{2}} C_{C}^{q} + \int_{-1}^{+1} dx \, \mathcal{H}_{g}(x, \xi, \mu_{F}) \left(0 + C_{1}^{g} + \frac{1}{2} \ln \frac{|Q^{2}|}{\mu_{F}^{2}} C_{C}^{q} + \int_{-1}^{+1} dx \, \mathcal{H}_{g}(x, \xi, \mu_{F}) \left(0 + C_{1}^{g} + \frac{1}{2} \ln \frac{|Q^{2}|}{\mu_{F}^{2}} C_{C}^{q} + \int_{-1}^{+1} dx \, \mathcal{H}_{g}(x, \xi, \mu_{F}) \left(0 + C_{1}^{g} + \frac{1}{2} \ln \frac{|Q^{2}|}{\mu_{F}^{2}} C_{C}^{q} + \int_{-1}^{+1} dx \, \mathcal{H}_{g}(x, \xi, \mu_{F}) \right)$$

Reminder
Experimental
data
Kinematics
Compton form
factors
Compton form
relations
Analytic properties
Subtraction constant
Global fit
Extraction of CFFs
Results
Im $\mathcal{H}_{q}(\xi, Q^{2}) \stackrel{\text{NLO}}{=} \mathcal{I}(\xi) \mathcal{H}_{q}^{+}(\xi, \xi, \mu_{F})$
Accessing
GFFs
GFFs
Principle
Systematics
L model of the systematics
L mo

Abbreviations

 $+\frac{1}{2}\ln\frac{|Q^2|}{\mu_F^2}C_{\text{Coll}}^q$ $r_{1}^{g} + \frac{1}{2} \ln \frac{|Q^{2}|}{\mu_{F}^{2}} C_{\text{Coll}}^{g}$ nd Müller (1998) re *et al*. (2011)

$$\int_{-1}^{+1} dx \, \mathcal{T}^{q}(x) \Big(H_{q}^{+}(x,\xi,\mu_{F}) - H_{q}^{+}(\xi,\xi,\mu_{F}) \Big)$$

+ gluon contributions.

H. Moutarde EJC 2022 | 78 / 131

 $\mathrm{Im}\mathcal{H}_{a}(\xi,Q^{2}) \stackrel{\mathrm{NLO}}{=} \mathcal{I}(\xi)H_{a}^{+}(\xi,\xi,\mu_{F})$

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle

Systematics

Summary

Abbreviations

Imaginary part of Compton Form Factor \mathcal{H}_q at NLO:

+ gluon contributions.

Due to $\mathcal{O}(\alpha_{S}(\mu_{F}))$ corrections:

+ $\int_{-1}^{+1} dx \mathcal{T}^{q}(x) \Big(H_{q}^{+}(x,\xi,\mu_{F}) - H_{q}^{+}(\xi,\xi,\mu_{F}) \Big)$

Im $\mathcal{H}_{a}(\xi, Q^{2}) \stackrel{\text{NLO}}{=} \mathcal{I}(\xi) H_{a}^{+}(\xi, \xi, \mu_{F})$

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle Systematics

Summary

Abbreviations

Imaginary part of Compton Form Factor \mathcal{H}_q at NLO:

 $+ \int_{-1}^{+1} dx \,\mathcal{T}^q(x) \Big(H_q^+(x,\xi,\mu_F) - H_q^+(\xi,\xi,\mu_F) \Big)$ + gluon contributions

+ gluon contributions.

Due to $\mathcal{O}(\alpha_{\mathcal{S}}(\mu_{\mathcal{F}}))$ corrections:

• Im \mathcal{H}_a is **no more equal** to $\pi H_a^+(x = \xi, \xi)$ (LO):

 $\mathrm{Im}\mathcal{H}_{a}(\xi,Q^{2}) \stackrel{\mathrm{NLO}}{=} \mathcal{I}(\xi)H_{a}^{+}(\xi,\xi,\mu_{F})$

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle Systematics

Summary

Abbreviations

Imaginary part of Compton Form Factor \mathcal{H}_q at NLO:

 $+ \int_{-1}^{+1} dx \, \mathcal{T}^q(x) \Big(H_q^+(x,\xi,\mu_F) - H_q^+(\xi,\xi,\mu_F) \Big)$ + gluon contributions.

Due to $\mathcal{O}(\alpha_{S}(\mu_{F}))$ corrections:

Multiplicative factor *I* depends on *ξ*.

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle

Systematics

Summary

Abbreviations

Imaginary part of Compton Form Factor \mathcal{H}_q at NLO:

 $\operatorname{Im}\mathcal{H}_{q}(\xi, Q^{2}) \stackrel{\operatorname{NLO}}{=} \mathcal{I}(\xi)H_{q}^{+}(\xi, \xi, \mu_{F})$ $+ \int_{-1}^{+1} dx \mathcal{T}^{q}(x) \Big(H_{q}^{+}(x, \xi, \mu_{F}) - H_{q}^{+}(\xi, \xi, \mu_{F})\Big)$ + gluon contributions.

Due to $\mathcal{O}(\alpha_{\mathcal{S}}(\mu_{\mathcal{F}}))$ corrections:

- Im \mathcal{H}_q is no more equal to $\pi H_q^+(x = \xi, \xi)$ (LO):
 - Multiplicative factor \mathcal{I} depends on ξ .
 - Integral with off-diagonal terms.

Im $\mathcal{H}_{a}(\xi, Q^{2}) \stackrel{\text{NLO}}{=} \mathcal{I}(\xi) H_{a}^{+}(\xi, \xi, \mu_{F})$

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle

Systematics

Summary

Abbreviations

Imaginary part of Compton Form Factor \mathcal{H}_q at NLO:

+ gluon contributions.

+ $\int_{-1}^{+1} dx \mathcal{T}^{q}(x) \Big(H_{q}^{+}(x,\xi,\mu_{F}) - H_{q}^{+}(\xi,\xi,\mu_{F}) \Big)$

Due to $\mathcal{O}(\alpha_{\mathcal{S}}(\mu_{\mathcal{F}}))$ corrections:

• Im \mathcal{H}_q is no more equal to $\pi H_q^+(x = \xi, \xi)$ (LO):

- Multiplicative factor \mathcal{I} depends on ξ .
- Integral with off-diagonal terms.
- ImH_q contains gluon contributions.

Im $\mathcal{H}_{a}(\xi, Q^{2}) \stackrel{\text{NLO}}{=} \mathcal{I}(\xi) H_{a}^{+}(\xi, \xi, \mu_{F})$

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle Systematics

Summary

Abbreviations

Imaginary part of Compton Form Factor \mathcal{H}_q at NLO:

 $+ \int_{-1}^{+1} dx \mathcal{T}^{q}(x) \Big(H_{q}^{+}(x,\xi,\mu_{F}) - H_{q}^{+}(\xi,\xi,\mu_{F}) \Big)$ + gluon contributions.

Due to $\mathcal{O}(\alpha_{\mathcal{S}}(\mu_{\mathcal{F}}))$ corrections:

• Im \mathcal{H}_q is no more equal to $\pi H_q^+(x = \xi, \xi)$ (LO):

- Multiplicative factor \mathcal{I} depends on ξ .
- Integral with off-diagonal terms.
- $Im \mathcal{H}_q$ contains gluon contributions.
- **No more direct link** to H_q even in valence region where $H_q(-\xi,\xi)$ is expected to be small.

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle Systematics

Summary

Abbreviations

Imaginary part of Compton Form Factor \mathcal{H}_q at NLO:

$$\operatorname{Im}\mathcal{H}_{q}(\xi, Q^{2}) \stackrel{\operatorname{NLO}}{=} \mathcal{I}(\xi)H_{q}^{+}(\xi, \xi, \mu_{F}) + \int_{-1}^{+1} dx \mathcal{T}^{q}(x) \Big(H_{q}^{+}(x, \xi, \mu_{F}) - H_{q}^{+}(\xi, \xi, \mu_{F})\Big) + \text{ gluon contributions.}$$

Due to $\mathcal{O}(\alpha_{\mathcal{S}}(\mu_{\mathcal{F}}))$ corrections:

• Im \mathcal{H}_q is no more equal to $\pi H_q^+(x = \xi, \xi)$ (LO):

- Multiplicative factor \mathcal{I} depends on ξ .
- Integral with off-diagonal terms.
- $Im \mathcal{H}_q$ contains gluon contributions.
- **No more direct link** to H_q even in valence region where $H_q(-\xi,\xi)$ is expected to be small.

Question: What is the size of these $\mathcal{O}(\alpha_{S}(\mu_{F}))$ corrections?

OF LA RECHERCHE À L'INDUSTR

NLO computations.

Large gluon contributions in some kinematic region.

Analytic properties of CFFs. Elaborating on polynomiality.

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

H(x,

Kinematics

Compton form factors

Dispersion relations

Analytic properties

Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle

Systematics

Summary

Abbreviations

■ Using DDs, separate the D-term from the rest of the GPD

$$\begin{aligned} \xi, t, \mu_F \rangle &= \operatorname{sgn}(\xi) D\left(\frac{x}{\xi}, t, \mu_F\right) \\ &+ \int_{\Omega} \mathrm{d}\alpha \mathrm{d}\beta \,\delta(x - \beta - \alpha\xi) f(\beta, \alpha, t, \mu_F) \end{aligned}$$

Read analytic properties of CFF $\mathcal H$ as a function of ξ

$$\mathcal{H}(\xi, t, Q^2) = \int_{\Omega} d\alpha d\beta T \left(\beta + \alpha \xi, \xi, \alpha_{\mathcal{S}}(\mu_F), \frac{Q}{\mu_F}\right) f(\beta, \alpha, t, \mu_F)$$

+similar D-term contribution

from those of the DVCS coefficient function $\ensuremath{\mathcal{T}}.$

Dispersion relations. Introducing a subtraction constant.

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

- Kinematics
- Compton form factors

Dispersion relations

Analytic properties

Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle Systematics

Summary

Abbreviations

- Dispersion relations can be independently studied
 - at the level of the amplitude (CFF),
 - at the level of the coefficient function (factorization).
- The subtraction constant keeps track of the dominant singularity to apply Cauchy's theorem.

Once-subtracted dispersion relation for the CFF $\ensuremath{\mathcal{H}}$

$$\begin{aligned} \mathcal{C}_{\mathcal{H}}(t, Q^2) &= \operatorname{Re}\mathcal{H}(\xi, t, Q^2) + \\ &- \frac{1}{\pi} \int_0^1 \mathrm{d}\xi' \operatorname{Im}\mathcal{H}(\xi', t, Q^2) \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi'}\right) \end{aligned}$$

H. Moutarde | EJC 2022 | 82 / 131

Modeling of $\mathcal{H}, \widetilde{\mathcal{H}}, \mathcal{E}$ and $\widetilde{\mathcal{E}}$. Independent descriptions of real and imaginary parts.

10-1 100

-

83 / 131

(2019)

ELE DOR

Exclusive reactions as a nuclear manometer

Real and imaginary parts of CFFs parameterized by **neural** networks.

Reminder

Experimental data

- Kinematics
- Compton form factors

Dispersion relations

Analytic properties Subtraction constant

normalization linearization Q2

t

0

Global fit

Extraction of CEEs Results

Accessing GEEs

Principle

Systematics

Summary

Abbreviations

Propagation of uncertainties through replica method and evaluation of 68 % confidence levels.

Cea

A selection of results.

2600+ measurements of 30 observables published during 2001-17.

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

Kinematics Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs

Results

Accessing GFFs

Principle Systematics

Summary

Abbreviations

-0.2

0.05 0.1 0.15 0.2 0.25 0.3

COMPASS

A selection of results.

2600+ measurements of 30 observables published during 2001-17.

Abbreviations

H. Moutarde | EJC 2022 | 84 / 131

Pressure forces from DVCS measurements. A first-principle connection.

E E SOO

Exclusive reactions as a nuclear manometer

1 Expand D-term on Gegenbauer polynomials

$$D_{\text{term}}^{q}(z, t, \mu_{F}^{2}) = (1 - z^{2}) \sum_{\text{odd } n} d_{n}^{q}(t, \mu_{F}^{2}) C_{n}^{3/2}(z)$$

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle

Systematics

Summary

Abbreviations

2 Write dispersion relation for CFF (true at all pQCD orders)

$$\mathcal{C}_{\mathcal{H}}(t, Q^2) = \operatorname{Re}\mathcal{H}(\xi) - \frac{1}{\pi} \int_0^1 \mathrm{d}\xi' \operatorname{Im}\mathcal{H}(\xi') \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi'}\right)$$

3 Compute subtraction constant

$$\mathcal{C}_{H}^{q,g}(t,Q^2) = \frac{2}{\pi} \int_{1}^{+\infty} \mathrm{d}\omega \operatorname{Im} \mathcal{T}^{q,g}(\omega) \int_{-1}^{1} \mathrm{d}z \, \frac{D^{q,g}(z)}{\omega - z}$$

🛆 Diehl & Ivanov (2007)

Retrieve GFF

$$d_1^q(t,\mu_F^2) = 5C_q(t,\mu_F^2)$$

H. Moutarde | EJC 2022 | 85 / 131

Pressure forces from DVCS measurements. A first-principle connection.

ELE SOG

Exclusive reactions as a nuclear manometer

1 Expand D-term on Gegenbauer polynomials

$$D_{\text{term}}^{q}(z, t, \mu_{F}^{2}) = (1 - z^{2}) \sum_{\text{odd } n} d_{n}^{q}(t, \mu_{F}^{2}) C_{n}^{3/2}(z)$$

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle

Systematics

Summary

Abbreviations

 $\ensuremath{{\hbox{2}}}$ Write dispersion relation for CFF (true at all pQCD orders)

$$\mathcal{C}_{\mathcal{H}}(t, Q^2) = \operatorname{Re}\mathcal{H}(\xi) - \frac{1}{\pi} \int_0^1 \mathrm{d}\xi' \operatorname{Im}\mathcal{H}(\xi') \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi'}\right)$$

3 Compute subtraction constant at LO

$$\mathcal{C}_{H}(t, Q^{2}) = 4 \sum_{q} e_{q}^{2} \sum_{\text{odd } n} d_{n}^{q}(t, \mu_{F}^{2} \equiv Q^{2})$$

⁄ Diehl & Ivanov (2007)

Retrieve GFF

$$d_1^q(t,\mu_F^2) = 5C_q(t,\mu_F^2)$$

H. Moutarde | EJC 2022 | 85 / 131

Exclusive
reactions as a
nuclear
manometer

Experimental data

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties

Subtraction constant

Global fit

Extraction of CFFs

Results

Accessing GFFs

Principle

Systematics

Summary

Abbreviations

Internal pressure	
H. Moutarde	EJC 2022 86 / 131

Exclusive
reactions as a
nuclear
manometer

Experimental uata	Exp	erim	ental	l data
-------------------	-----	------	-------	--------

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties Subtraction constant Global fit Extraction of CFFs	GPD H
Results	
Accessing GFFs	Moments
Principle	
Systematics	GFF C
Summary	Internal pressure
Abbreviations	シック 正明 《西下本書》 《明
	H. Moutarde EJC 2022 86 / 131

<u>Ces</u>

Subtraction constant from measurements. EIC prospect: determination over a wide kinematic domain.

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

Kinematics

Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle Systematics

Summary

Abbreviations

• Range of kinematic variables in neural networks

$$10^{-6} < \xi < 1$$

$$0 < -t < 1 \text{ GeV}^2$$

$$1 < Q^2 < 100 \text{ GeV}^2$$
• Implement DVCS dispersion relation

$$\mathcal{C}_H(t,Q^2) = \text{Re}\mathcal{H}(\xi) - \frac{1}{\pi} \int_{10^{-6}}^{1} d\xi' \text{ Im}\mathcal{H}(\xi) \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi'}\right)$$

$$\xi = 0.2$$

$$Q^2 = 2 \text{ GeV}^2$$

$$\xi = 0.2$$

$$f = -0.3 \text{ GeV}^2$$

$$Q^2 = 2 \text{ GeV}^2$$

$$\int_{0}^{1} \frac{1}{\sqrt{10^{-6}}} d\xi' \text{ Im} \mathcal{H}(\xi) \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi'}\right)$$

$$f = -0.3 \text{ GeV}^2$$

$$\int_{0}^{2} \frac{1}{\sqrt{10^{-6}}} d\xi' \text{ Im} \mathcal{H}(\xi) \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi - \xi'}\right)$$

$$f = -0.3 \text{ GeV}^2$$

$$\int_{0}^{1} \frac{1}{\sqrt{10^{-6}}} d\xi' \text{ Im} \mathcal{H}(\xi) \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi - \xi'}\right)$$

$$f = -0.3 \text{ GeV}^2$$

$$\int_{0}^{2} \frac{1}{\sqrt{10^{-6}}} d\xi' \text{ Im} \mathcal{H}(\xi) \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi - \xi'}\right)$$

Pressure forces from DVCS measurements. Working assumptions.

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

Kinematics Compton form

factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle Systematics

Summary

Abbreviations

1 Subtraction constant assumed equal to d_1 .

2 Equal values for light quark contributions d_1^{uds} .

Radiative generation of gluon d^g₁ and charm d^c₁ contributions.

4 Tripole Ansatz
$$d_1(t, \mu_F) = d_1(\mu_F)(1 - t/\Lambda^2)^{-3}$$
.

Tripole Ansatz

10

5

-5

-100

SCH^{DVCS}

Pressure forces from DVCS measurements. Working assumptions.

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

Kinematics Compton form

factors

Dispersion relations

Analytic properties Subtraction constant 10

5

°₁°°

-5

Global fit

Extraction of CEEs Results

Accessing GEEs Principle

Systematics

Summary

Abbreviations

1 Subtraction constant assumed equal to d_1 .

2 Equal values for light quark contributions d_1^{uds} .

Radiative generation of gluon d_1^g and charm d_1^c contributions.

4 Tripole Ansatz
$$d_1(t, \mu_F) = d_1(\mu_F)(1 - t/\Lambda^2)^{-3}$$
.

d_1 from DVCS data

Parameter	Value
$d_1^{uds}(\mu_F^2)$	-0.45 ± 0.92
$d_1^c(\mu_F^2)$	-0.0020 ± 0.0041
$d_1^{g}(\mu_F^2)$	-0.6 ± 1.3

\bigtriangleup Dutrieux et al. (2021) < 17 → ELE DOR H. Moutarde EJC 2022 88 / 131

Pressure forces from DVCS measurements. Working assumptions.

Exclusive
reactions as a
nuclear
manometer

Reminder

Experimental data

Kinematics Compton form factors

- Dispersion relations
- Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle Systematics

Summary

Abbreviations

1 Subtraction constant assumed equal to d_1 .

Equal values for light quark contributions d_1^{uds} .

Radiative generation of gluon d^g₁ and charm d^c₁ contributions.

4 Tripole Ansatz $d_1(t, \mu_F) = d_1(\mu_F)(1 - t/\Lambda^2)^{-3}$.

Summary of existing determinations

No.	Marker in Fig. 3	$\sum_{q} d_{1}^{q}(\mu_{F}^{2})$	$\mu_{\rm F}^2$ in GeV ²	# of flavours	Type	Re
1	0	$-2.30 \pm 0.16 \pm 0.37$	2.0	3	from experimental data	[13
2		0.88 ± 1.69	2.2	2	from experimental data	14
3	0	-1.59	4	2	t-channel saturated model	[55
		-1.92	4	2	t-channel saturated model	[53
4		-4	0.36	3	χQSM	[3
5	∇	-2.35	0.36	2	χQSM	[1
6	\boxtimes	-4.48	0.36	2	Skyrme model	[5
7	H	-2.02	2	3	LFWF model	Ĵ5
8	\otimes	-4.85	0.36	2	χQSM	[5:
9	Ð	-1.34 ± 0.31	4	2	lattice QCD (MS)	[59
		-2.11 ± 0.27	4	2	lattice QCD (MS)	[59

▲ Dutrieux et al. (2021) H. Moutarde | EJC 2022 | 88 / 131

From CFFs to nucleon mechanical structure. A lot of model-dependence in current extractions.

Exclusive reactions as a nuclear manometer

Reminder

Experimental data

Kinematics Compton form

Compton for factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CFFs Results

Accessing GFFs

Principle Systematics

Summary

- No justification to truncate the subtraction constant expansion to its first term and assume that it is the *d*₁ coefficient related to the energy-momentum tensor.
- Shape of pressure profile is fixed by multipole Ansatz. Actual value is extremely sensitive to its parameters.

Summary

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

What is the proton internal pressure? Refining the concepts.

Cea

What is the proton internal pressure? Refining the concepts.

Abbreviations

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

Abbreviations used in this part.

Exclusive		
reactions as a		
nuclear		
manometer		

Reminder

Experimental data

Kinematics Compton form factors

Dispersion relations

Analytic properties Subtraction constant

Global fit

Extraction of CEEs Results

Accessing GEEs

Principle Systematics

Summary

ANN	artificial neural network
CFF	Compton form factor
DD	double distribution
DVCS	deeply virtual Compton scattering
DVMP	deeply virtual meson production
DR	dispersion relation
EIC	electron-ion collider
EFF	elastic form factor
GFF	gravitational form factor
GPD	generalized parton distribution
LO	leading order
NLO	next-to-leading order
TCS	timelike Compton scattering

Wednesday 7 Sep. 2022 10:00 - 11:00

Part IV Extraction of pressure distributions

From theory to numbers.

What is the proton internal pressure? Refining the concepts.

Ces

Increase the physics input in the global fit. An example of the bias-variance trade-off.

Exclusive reactions as a nuclear manometer

Reminder

Areas for improvement

CFF fits

GFF t-profile Isolating d₁

Physics program

Mechanical radius Nucleon EOS Hydrostatic equilibrium Stability conditions

Summary

Abbreviations

So far the CFF fit gathering most of the world DVCS measurements relies on an independent modeling of the CFF real and imaginary parts by neural networks.

• Convenient because of the **dimensionality** of the problem but yields **large statistical uncertainties**.

\land Moutarde *et al.* (2019)

 Conversaly a fit to the same data with a physically motivated parameterization still required *ad hoc* assumptions.

🛆 Moutarde *et al*. (2018)

Many first-principle constraints expressed at the GPD level are not implemented at the CFF level.

OF LA RECHERCHE À L'INDUSTR

Increase the physics input in the global fit. An example of the bias-variance trade-off.

Increase the physics input in the global fit. An example of the bias-variance trade-off.

Exclusive reactions as a nuclear manometer

Reminder

Areas for

GFF t-profile Isolating d₁

Physics program

Hydrostatic equilibrium

improvement CFF fits

- Next step requires a (challenging) **GPD global fit** to world data.
- On the long run, need more experimental data to Increase the Q²-lever arm.
 - Provide a better handle on the real part of \mathcal{H} .
 - Improve the **accuracy** of existing measurements.
 - Probe the kinematic regions insufficiently constrained.

Relax modeling assumptions on $d_1(t)$. Shape of pressure distribution not set by the current fit...

Exclusive reactions as a nuclear manometer

Use multipole Ansatz

$$d_1(t,\mu_F) = rac{d_1(\mu_F)}{\left(1-rac{t}{\Lambda^2}
ight)^lpha}$$

Reminder

Areas for improvement

CFF fits

GFF t-profile

Isolating d_1

Physics program

Mechanical radius

Nucleon EOS

Hydrostatic

equilibrium

Stability conditions

Summary

Abbreviations

Remind
$$d_1^q(t, \mu_F^2) = 5C_q(t, \mu_F^2)$$
.

Plug in pressure anisotropy

$$\frac{s(r)}{M} \propto \int \frac{\mathrm{d}^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\frac{4}{r^{2}} \frac{t^{-1/2}}{M^{2}} \frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}} \left(t^{5/2} d_{1}(t)\right) \right\}$$

- Normalization $d_1(\mu_F)$ set by fit.
- Position of node in r depends on Λ.
- 🛆 Dutrieux et al. (2021)

Exclusive reactions as a

nuclear manometer

Reminder

Areas for improvement

CFF fits

GFF t-profile

Isolating d_1

Physics program

Mechanical radius

Nucleon EOS

Hydrostatic

equilibrium Stability conditions

Summarv

Abbreviations

- Normalization set by fit.
 - Position of node in r depends on Λ.

\land Dutrieux et al. (2021)

- **Asymptotic** information on |t|-dependence from perturbative QCD. *But how large is "asymptotic"*?
- **Factorization** constraint: $Q^2 \gg |t|$. Most of the experimental data used as fit input has low |t|.
- Need for more experimental data points.

Relax modeling assumptions on $d_1(t)$. Shape of pressure distribution not set by the current fit...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ののべ

r [fm]

Increase Q^2 -lever arm. Evolution equations bring a slow $\log Q^2$ dependence.

Exclusive reactions as a nuclear manometer

Reminder

Areas for improvement

CFF fits

GFF t-profile

Isolating d_1

Physics program

Mechanical radius

Nucleon EOS

Hydrostatic

equilibrium

Stability conditions

Summary

Abbreviations

Remind computation of subtraction constant at LO

$$\mathcal{C}_{H}(t, Q^{2}) = 4 \sum_{q} e_{q}^{2} \sum_{\text{odd } n} d_{n}^{q}(t, \mu_{F}^{2} \equiv Q^{2})$$

🖄 Diehl & Ivanov (2007)

 Plug LO evolution of D-term to obtain the following pattern

$$\mathcal{C}_{H}(t, Q^{2}) \propto \sum_{\text{odd } n} d_{n}(t, \mu_{F}) \left(\frac{\alpha_{s}(Q^{2})}{\alpha_{s}(\mu_{F}^{2})} \right)^{\gamma_{n}}$$

with γ_n computed in perturbative QCD. Since $\alpha_s(Q^2) \propto 1/\log Q^2$, an exact knowledge of $\mathcal{C}_H(t,Q^2)$ on an Q^2 -interval allows to exactly retrieve d_n .

H. Moutarde | EJC 2022 | 98 / 131

Increase Q^2 -lever arm.

Anomalous dimensions γ_n are small and take comparable values.

Exclusive reactions as a nuclear manometer

Introduce evolution operator Γ so that $d_n(\mu_1) = \Gamma_n(\mu_1, \mu_2) d_n(\mu_2)$

Reminder

Areas for improvement CFF fits

GFF t-profile

Isolating d_1

Physics program

Mechanical radius Nucleon EOS Hydrostatic equilibrium

Stability conditions

Summary

Abbreviations

- Probed Q²-range in CFF fit: [1.5, 4] GeV².
- Γ₁ and Γ₃ are numerically very close.

- d_1 and d_3 for $Q^2 \in [1.5, 4]$ GeV².
- Experimental data mostly constrain $d_1 + d_3 + \dots$

▲ Dutrieux (et) al (2021) (%) H. Moutarde | EJC 2022 | 99 / 131

Anomalous dimensions γ_n and Q^2 -lever arm. Inverse problem and regularization.

Exclusive reactions as a nuclear manometer

Remind pattern of the problem

$$\mathcal{C}_{H}(t, Q^{2}) \propto \sum_{\text{odd } n} d_{n}(t, \mu_{F}) \left(\frac{\alpha_{s}(Q^{2})}{\alpha_{s}(\mu_{F}^{2})} \right)^{\gamma_{h}}$$

Reminder

Areas for improvement CFF fits GFF t-profile Isolating d₁

Physics program

- Mechanical radius Nucleon EOS Hydrostatic
- equilibrium
- Stability conditions

Summary

Abbreviations

- If Q²-range is too small, a solution with d₁(t, µ_F) + d₃(t, µ_F) + d₅(t, µ_F) + ... = 0 can remain hidden within experimental uncertainties over the whole range Q² ∈ [Q²_{min}, Q²_{max}].
- In practice: act as if the problem of retrieving d₁, d₃,... from measurements has infinitely many solutions.
- Add extra regularization to select one solution robust with respect to statistical uncertainties.

H. Moutarde | EJC 2022 | 100 / 131

■ Today **cannot reliably estimate** the uncertainty associated to the neglect of *d*₃,...

What is an inverse problem? Can one hear the shape of a drum?

Exclusive reactions as a nuclear manometer

Reminder

Areas for improvement CFF fits GFF t-profile Isolating d₁

Physics program

- Mechanical radius Nucleon EOS Hydrostatic equilibrium
- Stability conditions

Summary

Abbreviations

"Can one hear the shape of a drum?"

What is an inverse problem? Can one hear the shape of a drum?

Exclusive reactions as a nuclear manometer

Reminder

Areas for improvement CFF fits GFF t-profile Isolating d₁

Physics program

Mechanical radius Nucleon EOS Hydrostatic equilibrium

Stability conditions

Summary

Abbreviations

What is an inverse problem? Can one hear the shape of a drum?

What is an inverse problem? Harmonics and patterns.

Exclusive	Vibration patterns	Vibration patterns
nuclear manometer		
		Saint Mary's University
Reminder		
Areas for		
improvement		
CFF fits		
GFF t-profile		
Isolating d ₁		
Physics		
program		Dhyrice Domos
Mechanical radius		PHVSICS Deffilos
Nucleon EOS		
Hydrostatic equilibrium		
Stability conditions		
Summary		

Abbreviations

What is an inverse problem? Harmonics and patterns.

Exclusive reactions as a	Vibration patterns	Vibration patterns
nuclear manometer		
Reminder		Saint Mary's University
Areas for		
CFF fits		
GFF t-profile		
Isolating d_1		
Physics		
program		Physics Demos
Mechanical radius		FINSICS DEITIOS
Nucleon EOS		
Hydrostatic equilibrium		
Stability conditions	And the second s	
Summarv	Analogy: what about the prote	on (
Abbreviations	■ "Hit" the proton, <i>e.g.</i> wit	h a virtual photon:
	 "Listen" to the distribution 	on of produced particles:
	"Measure" harmonics:	

H. Moutarde | EJC 2022 | 102 / 131

What is an inverse problem? Harmonics and patterns.

Exclusive reactions as a	Vibration patterns	Vibration patterns
nuclear manometer		Saint Manyle University
Reminder		
Areas for		
improvement		
CFF fits		
GFF t-profile		
Isolating d ₁		
Physics		
program		Physics Domos
Mechanical radius		FINSICS DEITIUS
Nucleon EOS		
Hydrostatic equilibrium		
Stability conditions	And a second second second second second	
Summary	Analogy: what about the proton?	
Abbreviations	■ "Hit" the proton, <i>e.g.</i> with a	virtual photon: hard
	"Listen" to the distribution of	f produced particles: exclusive
	"Measure" harmonics: GPDs	or CFFs

H. Moutarde | EJC 2022 | 102 / 131

From CFFs to GPDs.

Can we actually recover a GPD from the knowledge of a CFF?!

Exclusive reactions as a nuclear manometer

Reminder

Areas for improvement CFF fits GFF t-profile Isolating d₁

Physics program

Mechanical radius Nucleon EOS

Hydrostatic equilibrium

Stability conditions

Summary

Abbreviations

Assume CFF \mathcal{H} is perfectly known. Solve inverse problem?

$$\mathcal{H}^{q}(\xi, Q^{2}) = \int_{-1}^{1} \frac{\mathrm{d}x}{\xi} \mathcal{T}^{q}\left(\frac{x}{\xi}, \frac{Q^{2}}{\mu^{2}}, \alpha_{s}(\mu^{2})\right) \mathcal{H}^{q}(x, \xi, \mu^{2})$$

 Question raised about 20 years ago and has remained essentially open. Evolution proposed as a crucial element.

 P Freund (2000)

- There exist non-zero GPDs with vanishing forward limit and vanishing CFF up to order α_s^2 .
- The DVCS deconvolution problem is **ill-posed**.

🖉 Bertone *et al*. (2021)

- Same conclusion holds for several other hard exclusive processes.
- Define and implement further criterions in fitting strategies to select one solution among infinitely many.

H. Moutarde | EJC 2022 | 103 / 131

From CFFs to GPDs. Shadow GPDs have null LO and NLO CFF.

Exclusive reactions as a nuclear manometer

- Start with shadow GPD for flavor u at 1 GeV².
- Generate *d*, *s* and *g* while evolving up to 100 GeV².
- Compute resulting CFF.

Reminder Areas for

improvement CFF fits GFF t-profile

Isolating d_1

Physics program

Mechanical radius

Nucleon EOS

Hydrostatic equilibrium

Stability conditions

Summary

Abbreviations

From CFFs to GPDs.

Different GPD models having CFFs with difference less than 10^{-5} .

▲ Bertone et al. (2021) < 17 → ELE DOR H. Moutarde EJC 2022 105 / 131

1.0

**

1.0

Energy and mechanical radii. New notions of "nucleon size" beyond electric radius.

Exclusive Reminder reactions as a nuclear $\frac{\varepsilon_{a}(r)}{M} = \int \frac{\mathrm{d}^{3} \Delta}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ A_{a}(t) + \bar{C}_{a}(t) + \frac{t}{4M^{2}} \left[B_{a}(t) - 4C_{a}(t) \right] \right\}$ manometer Reminder $\frac{p_{r,a}(r)}{M} = \int \frac{\mathrm{d}^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta} \cdot \vec{r}} \left\{ -\bar{C}_{a}(t) - \frac{4}{r^{2}} \frac{t^{-1/2}}{M^{2}} \frac{\mathrm{d}}{\mathrm{d}t} \left(t^{3/2} C_{a}(t) \right) \right\}$ Areas for improvement CEE fits GFF t-profile Isolating d₁ Define energy and mechanical radii Physics program $\langle r^2 \rangle_E = \frac{1}{M} \int d^3 \vec{r} r^2 \epsilon(r)$ Mechanical radius Nucleon EOS Hydrostatic equilibrium $\langle r^2 \rangle_{\text{mech}} = \frac{1}{\mathcal{P}} \int d^3 \vec{r} p_r(r)$ Stability conditions Summarv Abbreviations with $\mathcal{P}_r = \int \mathrm{d}^3 \vec{r} r^2 p_r(r)$.

🖉 Polyakov and Schweitzer (2018)

Lorcé et al. (2019) ∃ ⊑ 2022 | 106 / 131

Equation of state.

Elaborating on the relation between energy and pressure.

Simple multiple models: dipole for GFFs A and C, tripole

Exclusive reactions as a nuclear manometer

Reminder

Areas for improvement

CFF fits GFF t-profile Isolating d₁

Physics program

Mechanical radius

Nucleon EOS

Hydrostatic equilibrium Stability conditions

Summary

Abbreviations

for GFFs B and C.

Neutron stars

OF LA RECARCAE À L'INDUSTRIE

Equation of state.

Elaborating on the relation between energy and pressure.

Reminder

Areas for improvement

CFF fits GFF t-profile Isolating d_1

Physics program

Mechanical radius

Nucleon EOS

Hydrostatic equilibrium Stability conditions

Summary

Abbreviations

\land Lorcé et al. (2019)

Parametric plots of EOS

$$(\epsilon(r), p_r(r)) (\epsilon(r), p_t(r)) (\epsilon(r), p(r))$$

 Quark and gluon contributions

< □ > < ② > < ③ > < ③ > < ③ > < ③ > < ③ > ③ □ > ○ Q ○
H. Moutarde | EJC 2022 | 107 / 131 OF LA RECIERCIE À L'INDUST

EMT conservation: consequences. Hydrostatic equilibrium in the presence of pressure anisotropy.

Exclusive reactions as a nuclear manometer

• Conservation of total EMT $\partial_{\mu} T^{\mu\nu} = 0$ implies in the Breit frame $\frac{\mathrm{d}p_r(r)}{\mathrm{d}r} = -\frac{2s(r)}{r}$

Reminder

Areas for improvement

🖾 Lorcé et al. (2019)

 Consequence: von Laue condition

$$\int_0^\infty \mathrm{d}r \, r^2 p(r) = 0$$

< □ > < ⑦ > < 臣 > < 臣 > 王目 のへで
H. Moutarde | EJC 2022 | 108 / 131

Stability in hydrodynamics. Consequences on GFFs?

Exclusive reactions as a nuclear manometer

Reminder

Areas for improvement

CFF fits GFF t-profile Isolating d₁

Physics program

Mechanical radius

Nucleon EOS

Hydrostatic equilibrium

Stability conditions

Summary

Abbreviations

Expectations for stable systems

- $\epsilon(0) < \infty$, $p(0) < \infty$ and s(0) = 0.
- $\epsilon(r) > 0$ and $p_r(r) > 0$
- $d\epsilon/dr < 0$ and $dp_r/dr < 0$
- Conjecture: C(0) < 0 (and so is d_1).
- Phenomenological or theoretical checks: other theories or targets (not just hadrons).
- Further characterization of the underlying dynamics?

< □ > < ⑦ > < 臣 > < 臣 > 王目 のへで
H. Moutarde | EJC 2022 | 109 / 131

Summary

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

What is the proton internal pressure? Refining the concepts.

What is the proton internal pressure? Refining the concepts.

What is the proton internal pressure? Refining the concepts.

Abbreviations

▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶
▲□▶

Abbreviations used in this part.

Exclusive reactions as a nuclear manometer	ANN CFF DDVCS	artificial neural network Compton form factor double deeply virtual Compton scattering
Reminder	DVCS	deeply virtual Compton scattering
Areas for improvement	DVMP	deeply virtual meson production
CFF fits	DR	dispersion relation
Isolating d ₁	EIC	electron-ion collider
Physics program	EFF	elastic form factor
Mechanical radius	GFF	gravitational form factor
Nucleon EOS Hydrostatic	GPD	generalized parton distribution
Stability conditions	LO	leading order
Summary	NLO	next-to-leading order
Abbreviations	PDF	parton distribution function
	TCS	timelike Compton scattering

Conclusion and prospects

● 20 = 1 = 4 = 1 + = 1

Conclusion and prospects. The quest towards proton internal pressure.

Exclusive reactions as a nuclear manometer

Conclusion

- Concept **well-defined** and suitable for phenomenology.
- Strong first-principle connection between concept and experimental data.
- Need for multi-channel analysis beyond LO on a wide kinematic coverage. EIC much needed!
- The GPD deconvolution problem is ill-posed. Huge sensitivity to numerical noise or experimental uncertainties.

gg75478317 GoGraph.com

- Development of a software ecosystem for 3D hadron structure studies.
- Need for coordinated effort involving fits, computing chains *e.g.* PARTONS and lattice QCD to make the best from experiments. H. Moutarde | EJC 2022 | 115 / 131

Cea

Thank you for your attention! Contact herve.moutarde@cea.fr for post-EJC 2022 questions.

H. Moutarde | EJC 2022 | 116 / 131

Appendix

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Ces

Charge radius: fully relativistic treatment. Localization of a quantum relativistic system.

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties From uncertainty principle: minimal spread in momentum / energy in a confined system.

< □ > < ② > < ③ > < ③ > < ③ > < ③ > < ③ > ③ □ > の Q ○
H. Moutarde | EJC 2022 | 118 / 131
Charge radius: fully relativistic treatment. Localization of a quantum relativistic system.

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

- From uncertainty principle: minimal spread in momentum / energy in a confined system.
- If the energy levels of the confined system are high enough, pair creation is possible.

Charge radius: fully relativistic treatment. Localization of a quantum relativistic system.

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

- From **uncertainty principle**: minimal spread in momentum / energy in a **confined** system.
- If the energy levels of the confined system are high enough, pair creation is possible.
- Pair creation may prevent the localization of a particle with a high resolution.

Charge radius: fully relativistic treatment. Localization of a quantum relativistic system.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ののべ

H. Moutarde | EJC 2022 | 118 / 131

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

- From uncertainty principle: minimal spread in momentum / energy in a confined system.
- If the energy levels of the confined system are high enough, **pair creation** is possible.
- Pair creation may prevent the localization of a particle with a high resolution.
- Discussions about nucleon radius refers to a specific prescription.

Exclusive reactions as a nuclear manometer

■ Wave packet for spinless mass *m* particle localized at *R*:

$$\left|\vec{R}\right\rangle = \int \frac{\mathrm{d}^{3}\vec{p}}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{p}}} \, e^{i\vec{p} \cdot \cdot \vec{R}} \psi(\vec{p}) \left|\vec{p}\right\rangle \text{ with } E_{p} = \sqrt{\vec{p}^{2} + m^{2}}$$

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional

Wigner distribution

GPD properties

⁄ Burkardt (2000)

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties • Wave packet for spinless mass *m* particle localized at \vec{R} :

$$\left. \vec{R} \right\rangle = \int \frac{\mathrm{d}^3 \vec{p}}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \, e^{i \vec{p} \cdot \cdot \cdot \vec{R}} \psi(\vec{p}) \left| \vec{p} \right\rangle \, \mathrm{with} \, E_p = \sqrt{\vec{p}^2 + m^2}$$

Normalized wave function ψ :

$$\int \frac{\mathrm{d}^{3}\vec{p}}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{p}}} |\psi(\vec{p})|^{2} = 1$$

\land Burkardt (2000)

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties • Wave packet for spinless mass *m* particle localized at \vec{R} :

$$\vec{R} \rangle = \int \frac{\mathrm{d}^3 \vec{p}}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \, e^{i\vec{p} \cdot \cdot \vec{R}} \psi(\vec{p}) \, |\vec{p}\rangle \ \text{with} \ E_p = \sqrt{\vec{p}^2 + m^2}$$

Normalized wave function ψ :

$$\int \frac{\mathrm{d}^{3}\vec{p}}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{p}}} |\psi(\vec{p})|^{2} = 1$$

• Covariant normalization of 1-particle states: $\left\langle \vec{R} \middle| \vec{R} \right\rangle = 1$.

⁄ Burkardt (2000)

(ロト 4 回 ト 4 □ + 1 □ + 1 □

Exclusive reactions as a nuclear manometer Wave packet for spinless mass *m* particle localized at *R*: $\left|\vec{R}\right\rangle = \int \frac{\mathrm{d}^{3}\vec{p}}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{p}}} e^{i\vec{p} \cdot \vec{R}} \psi(\vec{p}) \left|\vec{p}\right\rangle \text{ with } E_{p} = \sqrt{\vec{p}^{2} + m^{2}}$

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties **Normalized** wave function ψ :

$$\int \frac{\mathrm{d}^{3}\vec{p}}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{p}}} |\psi(\vec{p})|^{2} = 1$$

Covariant normalization of 1-particle states: \$\langle \vec{R} \vec{R} \vec{R} \rangle = 1\$.
Reminder: Definition of form factor

$$\left\langle \mathbf{p}' \left| J_{\mu}^{\text{e.m.}}(0) \right| \mathbf{p} \right\rangle = (\mathbf{p}_{\mu} + \mathbf{p}'_{\mu}) \mathbf{F}(\mathbf{q}^2)$$

• Fourier transform of charge distribution:

$$\int \mathrm{d}^{3}\vec{r}\,e^{i\vec{q}\cdot\vec{r}}\left\langle\vec{R}\left|\rho(\vec{r})\right|\vec{R}\right\rangle = \int \frac{\mathrm{d}^{3}\vec{p}}{(2\pi)^{3}} \frac{\psi^{*}(\vec{p}+\vec{q})\psi(\vec{p})}{\sqrt{E_{p}E_{p+q}}}\left\langle\vec{p}\right|\left|\rho(\vec{0})\right|\vec{p}\right\rangle$$

$$\overset{\text{@ Burkardt (2000)}}{\overset{\text{@ Determined}}{\overset{\text{Burkardt (2000)}}{\overset{\text{@ Determined}}{\overset{\text{Burkardt (2000)}}{\overset{\text{@ Determined}}{\overset{\text{Burkardt (2000)}}{\overset{\text{@ Determined}}{\overset{\text{Burkardt (2000)}}{\overset{\text{Burkardt (2000)}}{\overset{\text{@ Determined}}{\overset{\text{Burkardt (2000)}}{\overset{\text{Burkardt (2000)}}{\overset{Burkardt$$

Exclusive reactions as a nuclear manometer Wave packet for spinless mass *m* particle localized at *R*: $\left|\vec{R}\right\rangle = \int \frac{\mathrm{d}^{3}\vec{p}}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{p}}} e^{i\vec{p} \cdot \vec{R}} \psi(\vec{p}) \left|\vec{p}\right\rangle \text{ with } E_{p} = \sqrt{\vec{p}^{2} + m^{2}}$

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties **Normalized** wave function ψ :

$$\int \frac{\mathrm{d}^{3}\vec{p}}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{p}}} |\psi(\vec{p})|^{2} = 1$$

Covariant normalization of 1-particle states: \$\langle \vec{R} \begin{aligned} \vec{R} \begi

$$\left\langle p' \left| J_{\mu}^{\text{e.m.}}(0) \right| p \right\rangle = (p_{\mu} + p'_{\mu}) F(q^2)$$

• Fourier transform of charge distribution:

$$\int \mathrm{d}^{3}\vec{r}\,e^{i\vec{q}\cdot\cdot\vec{r}}\left\langle\vec{R}\left|\rho(\vec{r})\right|\vec{R}\right\rangle = \int \frac{\mathrm{d}^{3}\vec{p}}{(2\pi)^{3}} \frac{E_{p} + E_{p+q}}{2\sqrt{E_{p}E_{p+q}}}\psi^{*}(\vec{p}+\vec{q})\psi(\vec{p})F(q^{2})$$

$$\overset{\text{Burkardt (2000)}}{\overset{\text{Burkardt (2000)}}{\overset{Burkardt (2000)}}{\overset{Burkardt (2000)}}{\overset{$$

3D Fourier transform of charge distribution:

Exclusive reactions as a nuclear manometer

$$\mathrm{d}^{3}\vec{r}\,e^{i\vec{q}\cdot\vec{r}}\left\langle\vec{R}\,|\rho(\vec{r})\,|\,\vec{R}\right\rangle = \int \frac{\mathrm{d}^{3}\vec{p}}{(2\pi)^{3}} \frac{E_{p} + E_{p+q}}{2\sqrt{E_{p}E_{p+q}}}\psi^{*}(\vec{p}+\vec{q})\psi(\vec{p})F(q^{2})$$

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties

Three types of contributions

🖉 Burkardt (2000)

< 回 > < 三 > < 三 > 、

ELE DOG

H. Moutarde EJC 2022 120 / 131

Exclusive reactions as a nuclear manometer

r

$$\int \mathrm{d}^{3}\vec{r}\,e^{i\vec{q}\cdot\vec{r}}\left\langle\vec{R}\left|\rho(\vec{r})\right|\vec{R}\right\rangle = \int \frac{\mathrm{d}^{\circ}\rho}{(2\pi)^{3}}\frac{\mathcal{E}_{p}+\mathcal{E}_{p+q}}{2\sqrt{\mathcal{E}_{p}\mathcal{E}_{p+q}}}\psi^{*}(\vec{p}+\vec{q})\psi(\vec{p})\mathcal{F}(\boldsymbol{q}^{2})$$

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties Three types of contributions Form factor **sensitivity** form factor's shape: cannot take F out of the integral. $q^0 = \sqrt{(\vec{p} + \vec{q})^2 + M^2} - \sqrt{\vec{p}^2 + M^2}$

3D Fourier transform of charge distribution:

▲ Burkardt (2000)

H. Moutarde | EJC 2022 | 120 / 131

Exclusive reactions as a nuclear manometer

 $\int \mathrm{d}^{3}\vec{r}\,e^{i\vec{q}\cdot\vec{r}}\left\langle\vec{R}\,|\rho(\vec{r})\,|\,\vec{R}\right\rangle = \int \frac{\mathrm{d}^{3}\vec{p}}{(2\pi)^{3}} \frac{E_{p} + E_{p+q}}{2\sqrt{E_{p}E_{p+q}}}\psi^{*}(\vec{p}+\vec{q})\psi(\vec{p})F(q^{2})$

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties Three types of contributions

Form factor **sensitivity** form factor's shape: cannot take *F* out of the integral.

Wave packet Sensitivity to spatial distribution of the wave packet.

3D Fourier transform of charge distribution:

< ロ > 始 Burkardt > (2000) へ ??

H. Moutarde | EJC 2022 | 120 / 131

Exclusive reactions as a nuclear manometer

$$\int \mathrm{d}^{3}\vec{r}\,e^{i\vec{q}\cdot\vec{r}}\left\langle\vec{R}\left|\rho(\vec{r})\right|\vec{R}\right\rangle = \int \frac{\mathrm{d}^{3}\vec{p}}{(2\pi)^{3}} \frac{\vec{E}_{p} + \vec{E}_{p+q}}{2\sqrt{E_{p}E_{p+q}}}\psi^{*}(\vec{p}+\vec{q})\psi(\vec{p})F(q^{2})$$

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties Three types of contributions
 Form factor sensitivity form factor's shape: cannot take
 F out of the integral.

Wave packet Sensitivity to **spatial distribution** of the wave packet.

Relativistic effects Nonrelativistic limit $\vec{p}^2 \ll m^2$: $E_p \simeq m + \frac{\vec{p}^2}{2m}$ and $\frac{E_p + E_{p+q}}{2\sqrt{E_pE_{p+q}}} \simeq 1$

Exclusive reactions as a nuclear manometer

3D Fourier transform of charge distribution:

$$\int d^{3}\vec{r} e^{i\vec{q} \cdot \vec{r}} \left\langle \vec{R} \left| \rho(\vec{r}) \right| \vec{R} \right\rangle = \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \frac{E_{p} + E_{p+q}}{2\sqrt{E_{p}E_{p+q}}} \psi^{*}(\vec{p}+\vec{q})\psi(\vec{p})F(q^{2})$$

Quark Wigner distributions

Relativistic treatment

- Light-cone physics
- 5-dimensional Wigner distribution

GPD properties

- Three types of contributions
 - Form factor sensitivity form factor's shape: cannot take F out of the integral.
 - Wave packet Sensitivity to **spatial distribution** of the wave packet.

Relativistic effects Nonrelativistic limit $\vec{p}^2 \ll m^2$:

- 3D Fourier transform of charge distribution is *F* when:
 - Wave packet is very broad in momentum space.
 - Nonrelativistic limit.

▲ Burkardt (2000)

Exclusive reactions as a nuclear manometer

Expand 3D Fourier transform of charge distribution:

$$\int d^{3}\vec{r} e^{i\vec{q} \cdot \vec{r}} \left\langle \vec{R} \left| \rho(\vec{r}) \right| \vec{R} \right\rangle = \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \frac{E_{p} + E_{p+q}}{2\sqrt{E_{p}E_{p+q}}} \psi^{*}(\vec{p}+\vec{q})\psi(\vec{p})F(q^{2})$$

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties

$$\left\langle \vec{R} \left| \rho(\vec{r}) \right| \vec{R} \right\rangle = \int \frac{\mathrm{d} \vec{P}}{(2\pi)^3} \frac{2\vec{p} + 2\vec{p} + \vec{q}}{2\sqrt{E_p E_{p+q}}} \psi^*(\vec{p} + \vec{q}) \psi(\vec{p}) F(q^2)$$

$$\simeq 1 + \frac{\left\langle r^2 \right\rangle}{6} \vec{q}^2 - \frac{\left\langle r^2 \right\rangle}{6} \int \frac{\mathrm{d}^3 \vec{p}}{(2\pi)^3} |\psi(\vec{p})|^2 \frac{(\vec{q} \cdot \vec{p})^2}{E_p^2}$$

$$+ \int \frac{\mathrm{d}^3 \vec{p}}{(2\pi)^3} |\vec{q} \cdot \nabla \psi(\vec{p})|^2 - \frac{1}{8} \int \frac{\mathrm{d}^3 \vec{p}}{(2\pi)^3} |\psi(\vec{p})|^2 \frac{(\vec{q} \cdot \vec{p})^2}{E_p^4}$$

- **Relativistic corrections** appear with terms $\propto (\vec{q} \cdot \vec{p})^2 / \vec{E}_p^2$ or \vec{q}^2/E_p^2 .
- In a reference frame where E_p is large and \vec{q}^2 and $\vec{p} \cdot \vec{q}$ are finite, these corrections remain small.

A Burkardt (2000) H. Moutarde | EJC 2022 | 121 / 131

Cea

Charge radius: fully relativistic treatment. Quantum relativistic localization in an infinite momentum frame.

Exclusive reactions as a nuclear manometer Reference frame with a fast moving particle along z axis:

$$p_{\mu} \simeq \left(P + rac{m^2}{2P}, 0_{\perp}, P
ight)$$
 for large P

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties

In the Bjorken frame the 4-momentum of the exchanged photon is:

$$\boldsymbol{q}_{\mu} = \left(\frac{\boldsymbol{Q}^2}{2\boldsymbol{x}_{\boldsymbol{B}}\boldsymbol{P}}, \boldsymbol{q}_{\perp}, \boldsymbol{0}\right)$$

• With this choice are kept finite when $P \rightarrow \infty$:

$$p \cdot q = \frac{Q^2}{2x_B} + \frac{m^2 Q^2}{4x_B P^2}$$
 and $q^2 = \left(\frac{Q^2}{2x_B P}\right)^2 - q_\perp^2$

- In that frame the wave packet in completely delocalized in z direction and sharply peaked in transverse directions.
- Consistent relativistic def.: form factor = 2D Fourier transform of charge distribution in transverse plane.

Light-cone Poincaré algebra. Nonrelativistic properties of QFTs on the light-cone.

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties

- The Poincaré group is defined by:
 - 4 translation generators *P*^µ
 - 3 **spatial rotation** generators Jⁱ
 - 3 **boost** generators *K*ⁱ
- The 6 light-cone generators J³, P¹, P², P⁺, (K¹ + J²)/√2, and (K² - J¹)/√2 leave invariant the surfaces of constant x⁺.
- *P*⁻ generates translations in x⁺ directions: Hamiltonian.
 The sub-algebra generated by these 7 generators is isomorphic to the algebra of Galilean transformations of 2D quantum mechanics:
 - $P^+ \leftrightarrow Mass$
 - $^{\mathsf{p}-}$ \leftrightarrow Hamiltonian
 - $J^3 \quad \leftrightarrow \quad {\sf Rotations \ in \ transverse \ plane}$
 - $P^{\perp} \quad \leftrightarrow \quad \text{Translations in transverse plane}$

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties

Wigner operator for quarks at fixed light-cone time $y^+ = 0$ $\hat{\mathcal{W}}^q_{\Gamma}(ec{b}_{\perp},ec{k}_{\perp},x) =$

 $\frac{1}{2} \int \frac{\mathrm{d}z^{-}\mathrm{d}^{2}z_{\perp}}{(2\pi)^{3}} e^{i(xP^{+}z^{-}-\vec{k}_{\perp}}\cdot\vec{z}_{\perp})} \bar{q}\left(y-\frac{z}{2}\right) \Gamma \mathcal{L}q\left(y+\frac{z}{2}\right)\Big|_{z^{+}=0}$

🖄 Lorcé and Pasquini (2011)

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

V

GPD properties

Wigner operator for quarks at fixed light-cone time $y^+ = 0$ $\hat{\mathcal{W}}_{\Gamma}^{q}(\vec{b}_{\perp}, \vec{k}_{\perp}, x) = \frac{1}{2} \int \frac{\mathrm{d}z^- \mathrm{d}^2 z_{\perp}}{(2\pi)^3} e^{i(xP^+z^- - \vec{k}_{\perp} + \vec{z}_{\perp})} \bar{q} \left(\mathbf{y} - \frac{z}{2} \right) \Gamma \mathcal{L}q \left(\mathbf{y} + \frac{z}{2} \right) \Big|_{z^+ = 0}$

where:

$$\mathbf{y}^{\mu} = (0, 0, \vec{b}_{\perp}),$$

🖄 Lorcé and Pasquini (2011)

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties

Wigner operator for quarks at fixed light-cone time $y^+=0$

$$\begin{split} \hat{\mathcal{W}}_{\Gamma}^{\boldsymbol{q}}(\vec{b}_{\perp},\vec{k}_{\perp},\boldsymbol{x}) &= \\ \frac{1}{2} \int \frac{\mathrm{d}\boldsymbol{z}^{-}\mathrm{d}^{2}\boldsymbol{z}_{\perp}}{(2\pi)^{3}} \, \boldsymbol{e}^{\boldsymbol{i}(\boldsymbol{x}\boldsymbol{P}^{+}\boldsymbol{z}^{-}-\vec{k}_{\perp}} \cdot \vec{\boldsymbol{z}}_{\perp}) \bar{\boldsymbol{q}}\left(\boldsymbol{y}-\frac{\boldsymbol{z}}{2}\right) \Gamma \mathcal{L}\boldsymbol{q}\left(\boldsymbol{y}+\frac{\boldsymbol{z}}{2}\right) \bigg|_{\boldsymbol{z}^{+}=\boldsymbol{0}} \end{split}$$

where:

$$y^{\mu} = (0, 0, \vec{b}_{\perp})$$

• p, p' incoming and outgoing hadron momenta, P = (p + p')/2,

\land Lorcé and Pasquini (2011)

イロト 不得 トイヨト イヨト ヨヨ ののの

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties

Wigner operator for quarks at fixed light-cone time $y^+ = 0$

$$\hat{\mathcal{W}}_{\Gamma}^{\boldsymbol{q}}(\vec{b}_{\perp},\vec{k}_{\perp},\mathbf{x}) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}\mathrm{d}^{2}\boldsymbol{z}_{\perp}}{(2\pi)^{3}} e^{\boldsymbol{i}(\mathbf{x}\boldsymbol{P}^{+}\boldsymbol{z}^{-}-\vec{k}_{\perp}\cdot\vec{z}_{\perp})} \bar{q}\left(\boldsymbol{y}-\frac{\boldsymbol{z}}{2}\right) \Gamma \mathcal{L}q\left(\boldsymbol{y}+\frac{\boldsymbol{z}}{2}\right) \bigg|_{\boldsymbol{z}^{+}=\boldsymbol{0}}$$

where:

$$y^{\mu} = (0, 0, \vec{b}_{\perp}),$$

• p, p' incoming and outgoing hadron momenta, P = (p + p')/2,

• $\mathbf{x} = k^+/P^+$ longitudinal momentum fraction,

\land Lorcé and Pasquini (2011)

▲ロト ▲圖ト ▲国ト ▲国ト 回日 わえぐ

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties

Wigner operator for quarks at fixed light-cone time $y^+ = 0$

$$\hat{\mathcal{W}}_{\Gamma}^{\boldsymbol{q}}(\vec{b}_{\perp},\vec{k}_{\perp},\boldsymbol{x}) = \\ \frac{1}{2} \int \frac{\mathrm{d}\boldsymbol{z}^{-}\mathrm{d}^{2}\boldsymbol{z}_{\perp}}{(2\pi)^{3}} e^{\boldsymbol{i}(\boldsymbol{x}\boldsymbol{P}^{+}\boldsymbol{z}^{-}-\vec{k}_{\perp}}\cdot\vec{\boldsymbol{z}}_{\perp}) \bar{\boldsymbol{q}}\left(\boldsymbol{y}-\frac{\boldsymbol{z}}{2}\right) \Gamma \mathcal{L} \boldsymbol{q}\left(\boldsymbol{y}+\frac{\boldsymbol{z}}{2}\right) \bigg|_{\boldsymbol{z}^{+}=\boldsymbol{0}}$$

where:

$$y^{\mu} = (0, 0, \vec{b}_{\perp}),$$

• p, p' incoming and outgoing hadron momenta, P = (p + p')/2,

- $x = k^+/P^+$ longitudinal momentum fraction,
- $\mathcal{L} \equiv \mathcal{L}\left(y \frac{z}{2}, y + \frac{z}{2}\right|n\right)$ Wilson line,

🛆 Lorcé and Pasquini (2011)

イロト 不良 トイヨト イヨト 山口 ろくろ

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties

Wigner operator for quarks at fixed light-cone time $y^+ = 0$

$$\mathcal{W}_{\Gamma}^{q}(\vec{b}_{\perp},\vec{k}_{\perp},x) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}\mathrm{d}^{2}z_{\perp}}{(2\pi)^{3}} e^{i(xP^{+}z^{-}-\vec{k}_{\perp}}\cdot\vec{z}_{\perp})} \bar{q}\left(y-\frac{z}{2}\right) \Gamma \mathcal{L}q\left(y+\frac{z}{2}\right)\Big|_{z^{+}=0}$$

where:

$$y^{\mu} = (0, 0, \vec{b}_{\perp}),$$

• p, p' incoming and outgoing hadron momenta, P = (p + p')/2,

- $x = k^+/P^+$ longitudinal momentum fraction,
- $\mathcal{L} \equiv \mathcal{L} \left(y \frac{z}{2}, y + \frac{z}{2} \right| n \right)$ Wilson line,

$$\Gamma = \gamma^+, \gamma^+ \gamma_5, i\sigma^{\perp +} \gamma_5.$$

\land Lorcé and Pasquini (2011)

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ●目目 のへで

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties

Wigner operator for quarks at fixed light-cone time $y^+ = 0$

$$\begin{split} \hat{\mathcal{W}}_{\Gamma}^{\boldsymbol{q}}(\vec{b}_{\perp},\vec{k}_{\perp},\boldsymbol{x}) &= \\ \frac{1}{2} \int \frac{\mathrm{d}\boldsymbol{z}^{-}\mathrm{d}^{2}\boldsymbol{z}_{\perp}}{(2\pi)^{3}} \, e^{\boldsymbol{i}(\boldsymbol{x}\boldsymbol{P}^{+}\boldsymbol{z}^{-}-\vec{k}_{\perp}} \cdot \vec{\boldsymbol{z}}_{\perp}) \bar{\boldsymbol{q}}\left(\boldsymbol{y}-\frac{\boldsymbol{z}}{2}\right) \Gamma \mathcal{L}\boldsymbol{q}\left(\boldsymbol{y}+\frac{\boldsymbol{z}}{2}\right) \bigg|_{\boldsymbol{z}^{+}=\boldsymbol{0}} \end{split}$$

where:

$$y^{\mu} = (0, 0, \vec{b}_{\perp}),$$

• p, p' incoming and outgoing hadron momenta, P = (p + p')/2,

• $x = k^+/P^+$ longitudinal momentum fraction,

• $\mathcal{L} \equiv \mathcal{L} \left(y - \frac{z}{2}, y + \frac{z}{2} \right| n \right)$ Wilson line,

$$\Gamma = \gamma^+, \gamma^+ \gamma_5, i\sigma^{\perp +} \gamma_5.$$

🛆 Lorcé and Pasquini (2011)

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 通言 のへ⊙

Exclusive reactions as a nuclear manometer

W

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

Vigner operator for quarks at fixed light-cone time
$$y^+ = 0$$

 $\hat{W}^q_{\Gamma}(\vec{b}_{\perp}, \vec{k}_{\perp}, x) = \frac{1}{2} \int \frac{\mathrm{d}z^- \mathrm{d}^2 z_{\perp}}{(2\pi)^3} e^{i(xP^+z^- - \vec{k}_{\perp} + \vec{z}_{\perp})} \bar{q} \left(y - \frac{z}{2}\right) \Gamma \mathcal{L}q \left(y + \frac{z}{2}\right) \Big|_{z^+=0}$

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

b17

Řτ

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties

Vigner operator for quarks at fixed light-cone time
$$y^+ = 0$$

 $\hat{W}^q_{\Gamma}(\vec{b}_{\perp}, \vec{k}_{\perp}, x) =$
 $\frac{1}{2} \int \frac{\mathrm{d}z^- \mathrm{d}^2 z_{\perp}}{(2\pi)^3} e^{i(xP^+z^- - \vec{k}_{\perp} + \vec{z}_{\perp})} \bar{q} \left(y - \frac{z}{2}\right) \Gamma \mathcal{L}q \left(y + \frac{z}{2}\right) \Big|_{z^+=0}$
Transverse center of

momentum $R_{\perp} = \sum_{i} x_{i} r_{\perp i}$,

■ Impact parameter b_⊥,

Ý

 R_{\perp}

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties

Wigner operator for quarks at fixed light-cone time $y^{+} = 0$ $\hat{W}_{\Gamma}^{q}(\vec{b}_{\perp}, \vec{k}_{\perp}, x) =$ $\frac{1}{2} \int \frac{\mathrm{d}z^{-}\mathrm{d}^{2}z_{\perp}}{(2\pi)^{3}} e^{i(xP^{+}z^{-}-\vec{k}_{\perp}+\vec{z}_{\perp})} \bar{q}\left(y-\frac{z}{2}\right) \Gamma \mathcal{L}q\left(y+\frac{z}{2}\right)\Big|_{z^{+}=0}$

Transverse center of momentum $R_{\perp} = \sum_{i} x_{i} r_{\perp i}$,

Impact parameter b_{\perp} ,

Transverse momentum k_{\perp} ,

Ŷ

 R_{\perp}

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

- Transverse center of momentum $R_{\perp} = \sum_{i} x_{i} r_{\perp i}$,
- Impact parameter b⊥,
- **Transverse momentum** k_{\perp} ,
- Longitudinal momentum xP⁺.

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties

Wigner operator for quarks at fixed light-cone time $y^+ = 0$ $\hat{W}^q_{\Gamma}(\vec{b}_{\perp}, \vec{k}_{\perp}, x) = \frac{1}{2} \int \frac{\mathrm{d}z^- \mathrm{d}^2 z_{\perp}}{(2\pi)^3} e^{i(xP^+z^- - \vec{k}_{\perp} \cdot \vec{z}_{\perp})} \bar{q} \left(y - \frac{z}{2}\right) \Gamma \mathcal{L}q \left(y + \frac{z}{2}\right) \Big|_{z^+=0}$

- k_{\perp} x_{P}^{+} R_{\perp}
- Transverse center of momentum $R_{\perp} = \sum_{i} x_{i} r_{\perp i}$,
- Impact parameter b⊥,
- Transverse momentum k_{\perp} ,
- Longitudinal momentum xP⁺.

Quark Wigner distribution.

Wigner distributions as matrix elements of localized nucleon states.

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties ■ Take a nucleon state $|p^+, \vec{p}_\perp, \vec{S}\rangle$ where \vec{S} is the **polarization** of the nucleon.

Wigner distribution (quantum relativistic framework)

$$\begin{aligned} \mathcal{W}_{\Gamma}^{q}(\vec{b}_{\perp},\vec{k}_{\perp},x,\vec{S}) &\equiv \\ \int \frac{\mathrm{d}^{2}\Delta_{\perp}}{(2\pi)^{2}} \left\langle p^{+},\frac{\Delta_{\perp}}{2},\vec{S} \right| \hat{\mathcal{W}}_{\Gamma}^{q}(\vec{b}_{\perp},\vec{k}_{\perp},x) \left| p^{+},-\right. \end{aligned}$$

- Wigner distributions are 2D Fourier transforms of more general objects: GTMDs.
- Leading twist: 16 GTMDs (complex-valued functions).

\land Meissner et al. (2009)

 $\frac{\Delta_{\perp}}{2}, \vec{S}$

126 / 131

```
🖉 Meissner et al. (2008)
```

H. Moutarde | EJC 2022 |

 Thus there are 16 Wigner distributions which are real-valued functions (leading twist). Cea

The family of 1-quark distributions. GPDs and TMDs provide complementary 3D information.

Exclusive reactions as a nuclear manometer

 $x, \xi, \vec{k}_{\perp}, \vec{\Delta}_{\perp}$ GTMD

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

 $\xi = -\frac{\Delta^+}{2P^+}$ $\Delta^2 = -\frac{4\xi^2 M^2 + \vec{\Delta}^2}{1 - \xi^2}$

Exclusive

reactions as a nuclear manometer

Quark Wigner distributions

Wigner distribution

treatment Light-cone physics 5-dimensional

GPD properties

< □	1	▲ Back t	to Wigner	distributions.	20
H. Moutarde	E	JC 2022	127 /	131	

< □	Þ				h c
H. Moutarde		EJC	2022	127 / 131	

The family of 1-quark distributions. GPDs and TMDs provide complementary 3D information.

The family of 1-quark distributions. GPDs and TMDs provide complementary 3D information.

Polynomiality. Mixed constraint from Lorentz invariance and discrete symmetries.

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties Express Mellin moments of GPDs as **matrix elements**:

$$\int_{-1}^{+1} \mathrm{d}x x^m H^q(x,\xi,t) = \frac{1}{2(P^+)^{m+1}} \left\langle P + \frac{\Delta}{2} \right| \bar{q}(0) \gamma^+ (i\overleftrightarrow{D}^+)^m q(0) \left| P - \frac{\Delta}{2} \right\rangle$$

- Identify the Lorentz structure of the matrix element: linear combination of (P⁺)^{m+1-k}(∆⁺)^k for 0 ≤ k ≤ m+1
- Remember definition of **skewness** $\Delta^+ = -2\xi P^+$.
- Select even powers to implement time reversal.
- Obtain polynomiality condition:

a⊥1

$$\int_{-1}^{1} \mathrm{d}x \, x^m H^q(x,\xi,t) = \sum_{i=0}^{m} (2\xi)^i C^q_{mi}(t) + (2\xi)^{m+1} C^q_{mm+1}(t) \, .$$

H. Moutarde | EJC 2022 | 128 / 131

OF LA RECARCIE À L'INDUSTRI

Double Distributions. Lorentz covariance by example.

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties

• Choose
$$F^q(\beta, \alpha) = 3\beta\theta(\beta)$$
 ad $G^q(\beta, \alpha) = 3\alpha\theta(\beta)$:

$$H^{q}(x,\xi) = 3x \int_{\Omega} d\beta d\alpha \,\delta(x-\beta-\alpha\xi)$$

Simple analytic expressions for the GPD:

$$\begin{aligned} H(x,\xi) &= \frac{6x(1-x)}{1-\xi^2} \text{ if } 0 < |\xi| < x < 1, \\ H(x,\xi) &= \frac{3x(x+|\xi|)}{|\xi|(1+|\xi|)} \text{ if } -|\xi| < x < |\xi| < 1. \end{aligned}$$

< □ > < ② > < ③ > < ③ > < ③ > < ③ > < ③ > ③ □ > ○ Q (⁰)
H. Moutarde | EJC 2022 | 129 / 131 OF LA RECARCAE À L'INDUSTRI

Double Distributions. Lorentz covariance by example.

Exclusive	Compute first Mellin moments.			
reactions as a nuclear manometer	п	$\int_{-\xi}^{+\xi} \mathrm{d}x x^n H(x,\xi)$	$\int_{+\xi}^{+1} \mathrm{d}x x^n H(x,\xi)$	$\int_{-\xi}^{+1} \mathrm{d}x x^n H(x,\xi)$
Quark Wigner distributions	0	$\frac{1+\xi-2\xi^2}{1+\xi}$	$\frac{2\xi^2}{1+\xi}$	1
treatment Light-cone physics 5-dimensional Wigner distribution	1	$\frac{1\!+\!\xi\!\!+\!\xi^2\!-\!3\xi^3}{2(1\!+\!\xi)}$	$\frac{2\xi^3}{1+\xi}$	$\frac{1+\xi^2}{2}$
GPD properties	2	$\frac{3(1-\xi)(1+2\xi+3\xi^2+4\xi^3)}{10(1+\xi)}$	$\frac{6\xi^4}{5(1+\xi)}$	$\frac{3(1+\xi^2)}{10}$
	3	$\frac{1\!+\!\xi\!\!+\!\xi^2\!+\!\xi^3\!+\!\xi^4\!-\!5\xi^5}{5(1\!+\!\xi)}$	$\frac{6\xi^5}{5(1+\xi)}$	$\frac{1+\xi^2+\xi^4}{5}$
	4	$\frac{1\!+\!\xi\!\!+\!\xi^2\!+\!\xi^3\!+\!\xi^4\!+\!\xi^5\!-\!6\xi^6}{7(1\!+\!\xi)}$	$\frac{6\xi^6}{7(1+\xi)}$	$\frac{1+\xi^2+\xi^4}{7}$
	Expressions get more complicated as <i>n</i> increases But they always yield polynomials! H. Moutarde EJC 2022 129 / 131			

Positivity. A consequence of the positivity of the nom in a Hilbert space.

Exclusive reactions as a nuclear manometer

Quark Wigner distributions

Relativistic treatment

Light-cone physics

5-dimensional Wigner distribution

GPD properties

 Identify the matrix element defining a GPD as an inner product of two different states.

 Apply Cauchy-Schwartz inequality, and identify PDFs at specific kinematic points, *e.g.*:

$$|H^{q}(x,\xi,t)| \leq \sqrt{\frac{1}{1-\xi^{2}}q\left(\frac{x+\xi}{1+\xi}\right)q\left(\frac{x-\xi}{1-\xi}\right)}$$

 This procedures yields infinitely many inequalities stable under LO evolution.

Pobylitsa, Phys. Rev. D66, 094002 (2002)

H. Moutarde | EJC 2022 |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ののべ

130 / 131

The overlap representation guarantees a priori the fulfillment of positivity constraints.

Commissulat 3 l'énergie atomique et aux énergies alternatives DRF Centre de Saclay | 91191 Gif-sur-Yvette Cedex Infu T. + 330(16 90 67 788 | - 430(0) 16 90 67 58 4 DPINN

Etablissement public à caractère industriel et commercial R.C.S. Paris B 775 685 01

▲□▶