Nuclear equation of state from ground and excited state properties of nuclei

3.- Current status on the determination of the nuclear Equation of State

Xavier Roca-Maza

Università degli Studi di Milano INFN sezione di Milano

École Joliot-Curie "Nuclear Matter under Pressure" Saint Pierre d'Oleron, France September 4th-9th

What can we learn from the Earth and the Heavens about the Nuclear Equation of State?

(some examples)

From Heaven: Neutron Star Mass

Nuclear models that account for different nuclear properties on Earth predict a large variety of Neutron Star Mass-Radius relations \rightarrow Observation of a 2M_{sun} has constrained nuclear models.

Tolman-Oppenheimer-Volkoff equation (sph. sym.):

$$\frac{dM(r)}{dr} = 4\pi r^2 \mathcal{E}(r);$$

$$\frac{dP}{dr} = -G \frac{\mathcal{E}(r)M(r)}{r^2} \left[1 + \frac{P(r)}{\mathcal{E}(r)} \right]$$

$$\left[1 + \frac{4\pi r^3 P(r)}{M(r)} \right] \left[1 - \frac{2GM(r)}{r} \right]^{-1}$$

 $\mathcal{E}(r) \rightarrow \text{degeneracy pressure from}$ neutrons $\rightarrow M_{\text{max}} = 0.7 M_{\text{sun}}$

Nuclear Physics input is fundamental

Figure 3 Neutron star mass-radius diagram The plot shows non-rotating A two-solar-mass neutron star measured using Shapiro delay - P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts & J. W. T. Hessels - Nature volume 467, 1081-1083(2010)

From Heaven: outer crust composition

- → span 7 orders of magnitude in denisty (from ionization ~ 10^4 g cm to the neutron drip ~ 10^{11} g cm)
- → it is organized into a **Coulomb lattice** of neutron-rich nuclei (ions) embedded in a relativistic **uniform electron gas**
- \rightarrow T ~ 10⁶ K ~ 0.1 keV \rightarrow one can treat nuclei and electrons at T = 0 K
- → At the lowest densities, the electronic contribution is negligible so the Coulomb lattice is populated by ⁵⁶ Fe nuclei.
- → As the **density increases**, the electronic contribution becomes important, it is energetically advantageous to lower its electron fraction by $e^- + (N, Z) \rightarrow (N + 1, Z - 1) + v_e$ and therefore $Z \downarrow$ with constant (approx) number of N
- → As the density continues to increase, penalty energy from the symmetry energy due to the neutron excess changes the composition to a dif ferent N-plateau

 $\frac{Z}{A} \approx \frac{Z_0}{A_0} - \frac{PF_e}{8a_{sym}} \text{ where } (A_0, Z_0) = {}^{56}\text{Fe}_{26}$

 $\label{eq:constraint} \begin{array}{l} \rightarrow & \mbox{The Coulomb lattice is made of more and more} \\ & \mbox{neutron-rich nuclei until the critical neutron-drip} \\ & \mbox{density is reached (} \mu_{drip} = m_n \mbox{).} \end{array}$

The faster the symmetry energy increases with density (L \uparrow), the more exotic the composition of the outer crust.

 $[M(N,Z) + \mathfrak{m}_n < M(N+1,Z)]$

From Heaven: Origin of elements

The Origin of the Solar System Elements

1 H		big	bang	fusion			COSI	mic ray	y fissio	n							2 He
a u	4 Be	mer	ging r	neutro	n stars		expl	oding	massiv	/e stan	ġ	5 B	O Ø	Z	8 0	9 F	10 Ne
11 Na	12 Mg	dyir	ng low	mass	stars	۲	explo	oding	white	dwarfs	0	13 Al	14 Si	15 P	18 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 C0	28 Ni	2 2	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Oş	77 lr	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			89 Ac	90 Th	91 P2	92	Pm	Sm	Eu	Ge	ID	by	HO	U	Elm.	D	La la
hic cre	eated	by Jei	nnifer	John	ison	0							Astro ESA/I	nomi NASA	cal Im /AASN	age (lova	Credits

Binary neutron star merger produced about 10²⁹kg of heavy elements!

The **crust** of a **NS** is made of very **exotic neutron rich nuclei,** stable only due to the extreme conditions (large densities). **Different nuclear models predict different compositions**

Nuclear mass predictions for the crustal composition of neutron stars: A Bayesian neural network approach R. Utama, J. Piekarewicz, and H. B. Prosper, Phys. Rev. C 93, 014311 (2016)

From Heaven: Gravitational wave signal from a binary neutron star merger

GW170817 from the binary neutron star merger → **constraint** neutron star **radius** and, thus, the **nuclear EoS**

Neutron Skins and Neutron Stars in the Multimessenger Era F. J. Fattoyev, J. Piekarewicz, and C. J. Horowitz Phys. Rev. Lett. 120, 172702 (2018)

Tidal deformability (Λ) is

a quadrupole deformation inferred from **GW signal** → proportional to **restoring force.** Hence, sensitive to the **nuclear EoS**

From Heaven & Earth: neutron skin and the Radius of a Neutron Star

Both, the **neutron skin thickness** ($\Delta r_{np} = r_n - r_p$) in neutron rich nuclei and the **radius** of a **neutron star** are related to the **neutron pressure** in infinite matter. The former around ρ_0 (L) while the latter in a broad range of densities.

→ Only for <u>unrealistically</u> **small neutron stars**, that is, for small central densities ($\rho_c \sim \rho_0$): nuclear models predict a **linear** relation between **R** and Δr_{np} ...

Low-Mass Neutron Stars and the Equation of State of Dense Matter - J. Carriere, C. J. Horowitz, and J. Piekarewicz - The Astrophysical Journal, 593 (2003) 463

From Earth: Giant Monopole Resonance do we understand it?

U. Garg, G. Colò / Progress in Particle and Nuclear Physics 101 (2018) 55–95

From Earth: Parity violating electron scattering and the neutron skin

Polarized electron-Nucleus scattering:

→ In good approximation, the weak interaction probes the neutron distribution in nuclei while Coulomb interaction probes the proton distribution

→ Different experimental efforts @ Jlab (USA) & MAMI (Germany)

Neutron Skin of 208Pb, Nuclear Symmetry Energy, and the Parity Radius Experiment X. Roca-Maza, M. Centelles, X. Viñas, and M. Warda Phys. Rev. Lett. 106, 252501 (2011)

 \rightarrow **Electrons** interact by **exchanging** a γ (couples to p) or a Z_0 boson (couples to n)

 \rightarrow Ultra-relativistic electrons, depending on their helicity (±), will interact with the nucleus seeing a slightly different potential: Coulomb ± Weak

$$A_{pv} = \frac{d\sigma_+/d\Omega - d\sigma_-/d\Omega}{d\sigma_+/d\Omega + d\sigma_-/d\Omega} \sim \frac{\text{Weak}}{\text{Coulomb}}$$

 \rightarrow Main **unknown** is ρ_n

 \rightarrow In **PWBA** for small momentum transfer **q**:

$$A_{pv} = \frac{G_F q^2}{4\sqrt{2}\pi\alpha} \left(1 - \frac{q^2 r_p^2}{3F_p(q)}\right) \Delta r_{np}$$

From Earth: dipole polarizability and neutron skin

The dipole **polarizability** measures the **tendency** of the nuclear **charge** distribution to be **distorted**.

From a macroscopic point of view $\alpha \sim$ (electric dipole moment)/(external electric field)

→ Using the **dielectric theorem**: the polarizability can be computed from the expectation value of the Hamiltonian in the constrained ground state $H'=H+\lambda D$

→ For guidance assuming the **Droplet model** for H, one would find:

$$\alpha_D \approx \frac{\pi e^2}{54} \frac{\langle r^2 \rangle}{J} A \left(1 + \frac{5}{2} \frac{\Delta r_{np} - \Delta r_{np}^{\text{surf}} - \Delta r_{np}^{\text{Coul}}}{\langle r^2 \rangle^{1/2} (I - I_{\text{Coul}})} \right)$$

Electric dipole polarizability in 208Pb: Insights from the droplet model - X. Roca-Maza, M. Brenna, G. Colò, M. Centelles, X. Viñas, B. K. Agrawal, N. Paar, D. Vretenar, and J. Piekarewicz Phys. Rev. C 88, 024316 (2013)

From Earth: A_{Pv} (JLab) versus α_D (RCNP)

Paul-Gerhard Reinhard, Xavier Roca-Maza, and Witold Nazarewicz Phys. Rev. Lett. 127, 232501 (2021)

SV-min, suitable model to predict EoS around ρ₀ and Δr_{np}

$$r_{
m skin} = 0.19 \pm 0.02 \,\,{
m fm}$$
 is $L = 54 \pm 8 \,\,{
m MeV}$

From Earth: A_{pv} (JLab) versus α_b (RCNP)

From Earth: A_{pv} (JLab) versus α_b (RCNP)

Paul-Gerhard Reinhard, Xavier Roca Maza, and Witold Nazarewicz arXiv:2206.03134

Nuclear EoS - XRM

13

From Heaven & Earth: low energy dipole response and nucleosynthesis

The **largest** the **neutron pressure** among neutrons (~L), the more the **excess neutrons** (~skin) are *"pushed out"* in the **outermost** part of the **nucleus** → spatial *decorrelation* of some of those neutrons with the nucleons in the core produces **larger low lying** responses.

> **GDR**=Giant Dipole Resonance **PDR**= Pygmy Dipole Resonance

Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis S. Goriely, Phys.Lett.B 436 (1998) 10-18

Low energy dipole strength in neutron-rich nuclei influences the neutron capture cross section and, thus, the r-process nucleosynthesis

From Earth: Isobaric Analog State and the breaking of isospin symmetry

- Analog state can be defined: $|A\rangle = \frac{T_{-}|0\rangle}{\langle 0|T_{+}T_{-}|0\rangle}$
- Displacement energy or E_{IAS}

$$\mathsf{E}_{\mathrm{IAS}} = \mathsf{E}_{\mathsf{A}} - \mathsf{E}_{\mathsf{0}} = \langle \mathsf{A} | \mathcal{H} | \mathsf{A} \rangle - \langle \mathsf{0} | \mathcal{H} | \mathsf{0} \rangle = \frac{\langle \mathsf{0} | \mathsf{T}_{+} [\mathcal{H}, \mathsf{T}_{-}] | \mathsf{0} \rangle}{\langle \mathsf{0} | \mathsf{T}_{+} \mathsf{T}_{-} | \mathsf{0} \rangle} = \frac{m_{1}}{m_{0}}$$

 $E_{IAS} \neq 0$ only due to Isospin Symmtry Breaking terms \mathcal{H} E_{IAS}^{exp} usually accuratelly measured !

From Earth: Isobaric Analog State and the breaking of isospin symmetry

→ Coulomb direct contribution: a simple model

• Assuming indepentent particle model and good isospin for $|0\rangle$ $(\langle 0|T_+T_-|0\rangle=2T_0=N-Z)$

$$E_{\text{IAS}} \approx E_{\text{IAS}}^{\text{C,direct}} = \frac{1}{N-Z} \int \left[\rho_n(\vec{r}) - \rho_p(\vec{r}) \right] U_{\text{C}}^{\text{direct}}(\vec{r}) d\vec{r}$$

where $U_C^{\text{direct}}(\vec{r}) = \int \frac{e^2}{|\vec{r}_1 - \vec{r}|} \rho_{\text{ch}}(\vec{r}_1) d\vec{r}_1$

• Assuming also a uniform neutron and proton distributions of radius R_n and R_p respectively, and $\rho_{ch} \approx \rho_p$ one can find

$$\mathsf{E}_{\mathrm{IAS}} \approx \mathsf{E}_{\mathrm{IAS}}^{\mathrm{C},\mathrm{direct}} \approx \frac{6}{5} \frac{Ze^2}{\mathsf{R}_{\mathrm{p}}} \left(1 - \sqrt{\frac{5}{12}} \frac{\mathsf{N}}{\mathsf{N} - \mathsf{Z}} \frac{\Delta r_{\mathrm{np}}}{\mathsf{R}_{\mathrm{p}}}\right)$$

One may expect: the larger the Δr_{np} the smallest E_{IAS}

From Earth: Isobaric Analog State and the breaking of isospin symmetry

17

From Heaven: ISB effects on NS? (very much speculative)

	$M_{\rm max}/M_{ m sun}$	R _{max} [km]	$ ho_{1.4}^{c}[{ m fm}^{-3}]$	<i>R</i> _{1.4}	$\Lambda_{1.4}$ [km]	$\xi_{1.4}$
SAMi	2.03	9.8	0.54	11.2	301	0.18
SAMi-ISB	1.88	9.8	0.59	11.2	261	0.19
SAMi-ISB	1.86	9.9	0.61	11.0	242	0.19
$(u_0 = s_0 = 0)$						

18

From Earth: charge radii difference in mirror mass nuclei

Isospin symmetry $\rightarrow \Delta r_{ch} := r_{ch}({}^{54}Ni) - r_{ch}({}^{54}Fe) = \Delta r_{np}({}^{54}Fe)$

19

Paul-Gerhard Reinhard and Witold Nazarewicz

From Earth: charge radii difference in mirror mass nuclei – ISB

Tomoya Naito, Xavier Roca-Maza, Gianluca Colò, Haozhao Liang, Hiroyuki Sagawa, arXiv:2202.05035

in the medium

Summary from Progress in Particle and Nuclear Physics 101 (2018) 96-176

EoS par.	Observable	Range	Comments
ρ_0	$\langle r_{\rm ch}^2 \rangle^{1/2}$	0.154-0.159	Most accurate EDFs on $M(N, Z)$ and $\langle r_{ch}^2 \rangle^{1/2}$ (see Section 5)
e ₀	M(N,Z)	-16.2 to -15.6	Most accurate EDFs on $M(N, Z)$ and $\langle r_{ch}^2 \rangle^{1/2}$ (see Section 5)
K ₀	M(N,Z)	220-245	Most accurate EDFs on $M(N, Z)$ and $(r_{cb}^2)^{1/2}$ (see Section 5)
	ISGMR	220-260	From EDFs in closed shell nuclei [116]
	ISGMR	250-315	Blaizot's formula [Eq. (32)] [51]
	ISGMR	~200	EDF describing also open shell nuclei [118]
J	M(N,Z)	29-35.6	Most accurate EDFs on $M(N, Z)$ and $\langle r_{cb}^2 \rangle^{1/2}$ (see Section 5)
	IVGDR	~24.1(8) + L/8	From EDF analysis $[S(\rho = 0.1 \text{ fm}^{-3}) = 24.1(8) \text{ MeV}]$ [273]
	PDS	30.2-33.8	From EDF analysis [370]
	PDS	31.0-33.6	From EDF analysis [371]
	α_D	24.5(8) + 0.168(7)L	From EDF analysis ²⁰⁸ Pb [96]
	α _D	30-35	From EDF analysis [179]
	IAS and Δr_{np}	30.2-33.7	From EDF analysis [325]
	AGDR	31.2-35.4	From EDF analysis [401]
	PDS, α_D , IVGQR, AGDR	32-33	From EDF analysis [508]
	compilation	29.0-32.7	[106]
	compilation	30.7-32.5	[107]
	compilation	28.5-34.9	[3]
L	M(N,Z)	27-113	Most accurate EDFs on $M(N, Z)$ $\langle r_{cb}^2 \rangle^{1/2}$ (see Section 5)
	ρ_n	40-110	proton- ²⁰⁸ Pb scattering [24]
	ρ_n	0-60	π photoproduction (²⁰⁸ Pb) [181]
	ρ_n	30-80	antiprotonic at. (EDF analysis) [102,509]
	Pweak	>20	Parity violating scattering [27]
	PDS	32-54	From EDF analysis [370]
	PDS	49.1-80.5	From EDF analysis [371]
	α_D	20-66	From EDF analysis [179]
	IVGQR and ISGQR	19-55	From EDF analysis [101]
	IAS and Δr_{np}	35-75	From EDF analysis [325]
	AGDR	75.2-122.4	From EDF analysis [401]
	PDS, α_D , IVGQR, AGDR	45.2-54.6	From EDF analysis [508]
	compilation	40.5-61.9	[106]
	compilation	42.4-75.4	[107]
	compilation	30.6-86.8	[3]

Summary

with qualitative indication of accuracy needed to describe experiment (note that absolute values might be subject to systematics)

 $\rho_0 \in [0.154, 0.159] \text{ fm}^{-3} \rightarrow \text{relative accuracy 2\%}$ \rightarrow needed to describe experiment (Rch) $\leq 0.1\%$ $\rightarrow e_0 \in [15.6, 16.2]$ MeV \rightarrow relative accuracy 4% \rightarrow needed to describe experiment (B) $\leq 0.0001\%$ \rightarrow K₀ \in [200,260] MeV \rightarrow relative accuracy 25% \rightarrow needed to describe experiment (E_x^{GMR}) \leq 7% \in [30,35] MeV \rightarrow relative accuracy (α) 15% \rightarrow needed to describe experiment $\leq 15\%$ → L \in [20,120] MeV \rightarrow relative accuracy (α) 150% \rightarrow needed to describe experiment $\leq 50\%$

 \rightarrow ...