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How are we dealing
with the nuclear
many-body
problem?

- Ab Inito methods

— Density Functional
Theory

—_

Physics of Hadrons

Physics of Nuclei
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Nuclear Many-Body Problem:

Nuclear interaction

Underlying interaction: the “so called” residual strong interaction = nuclear
force has not been derived yet (with the precision needed) from first principles as
QCD is non-perturbative at the low-energies (~ below m:=140 MeV) relevant
for the description of nuclei.

Phenomenological Lattice QCD (mn/my~0.6)
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Nuclear Force from Lattice QCD - N. Ishii, S. Aoki, and T. Hatsuda i ['I'm]
Phys. Rev. Lett. 99, 022001 (2007) .
Similar to CD-Bonn V(rmin)= -40 MeV but postion of
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. : the minimum diff. —» diff. saturation density
different saturation energy (mw/mp~0.6 scaled to physical value 140/775~0.18)



Chiral effective field theory:

Building the interaction from QCD

_ Eur. Phys. J. CT5, 186
QCD non-perturbative at low energies & 0'25:""' @ CMSRgrao  —O— HERA

G
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S. Bethke, Prog. Part. Nucl. Phys. 58, 351 (2007). 0.10 .
1 i as(Mz) = 0.1171+305% (3-jet mass)
— . _ >y
EQCD = Z (qflj}ﬁ qf —msqy Qf) — ETI GMVG , 0.05 | B os(Mz) = 0.1185 + 0.0006 (World average)
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Q[GeV]
Chiral symmerty: rotating left-handed and y )
the right-handed quark fields independently ¥. — ¢. and ¥r — ™ ¢g.

makes no difference to the theory: v, — ety and Yr — YR

Chiral symmerty in QCD is explicitly broken due to the non zero-quark masses and, even in the
Chiral limit (maas = 0), it is spontaneously broken. Exp. evidence due to the absence of parity
doublets [e.g. p (1) and & (1*) mesons has very different masses]

- Pseudo-Goldston bosons with finite mass: pions, kaons, ...



Chiral effective field theory

Building the interaction from QCD

Chiral EFT for nuclei: pions + nucleons with
breaking scale A~500 MeV

[there exist also other possibilities such as pionless Chiral EFT or pions+Delta+nucleons]
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Determination of the EFT parameters is not

unique - different Hamiltonians that agree with

experimental data on NN scattering and 3N data I

do not agree on the prediction of many body
data (e.g. Ca isotopes Z=20)



Many-body methods:

Nuclei are made from few to hundreds of nucleons!

Once the Hamiltonian has been built, a many-body
method is needed to calculate nuclei

Main many-body —40r | | | ! .' T NC'SM ;
approaches seem to agree _60L o H ’ . ]

. . . i O MR-IMSRG(2)
well if the same Hamiltonian [ o VS_IMSRG
i d: -80} - 2)
IS assumed: A v ccsD ]
— No core shell model (NCSM) > _100} oQd A A-CCSD(T) ]
- In medium similarity = _120L g ?;EQS)EFT ;
renormalization group (IMSRG) [ 1
- Coupled cluster (CC) ~140¢ o E
- Algebraic Diagrammatic ~1601 EiCH oo™ ooyl —0-B 0Oy’
Construction (ADC for Self- _180L httpis:.l'."doi.orgle.ISSBQprhy_ZDTCI.CIDS?g | | : | | I K
Consistent Green’s 12 14 16 18 20 22 24 26 28
Functions) A
- Quantum Monte Carlo (QMC) Ground-state energies of the oxygen (Z=8) isotopes for

. various many-body approaches, using the same chiral

- Many-body perturbation NN+3N(400) Hamiltonian. Gray bars indicate experimental
theory (MBPT) data.



DENSITY FUNCTIONAL THEORY

Hohenberg-Kohn theorems
P.Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

- Assuming a system of interacting fermions in a
confining external potential, there exist a
universal functional F[p] of the fermion density p:

: (WIT +V + Ve [ W) = + /Vext(?")p(?")d??

— and it can be shown that

ming (U7 +V + Voo |¥) =Gain, £

so E[p] has a minimum for the exact ground-
state density where it assumes the exact
energy as a value.

I




Kohn-Sham realization

F[p] = Tnon-int. [p]+VKS[p]

In nuclei no need of external confining potential

For any interacting system, there exists a local single-particle potential
Vks(r), such that the exact ground-state density of the interacting system
equals the ground-state density of the auxiliary non-interacting system:

Kohn-Sham o O

A
pexact(m — PKS (F) — Z |¢(F)|2 O‘?Okao (DFT)
— P

O
OLYQY‘(;) <\;—s/> O O o
where @ are singlle-particle orbitals and the GO O O
total wave-function correspond to a Slater : _
determinant. The E[p] is unique Self-bound Noninferacting
interacting Fermions
Fermions ? confined in the

__ Kohn-Sham
E[p] o T[p] —|_ VKS mp ?:})d Amf(rpv,o) potential
where T[p] is the kinetic energy of the non-interacting system and for which the

variational equation OF YA

op 0p

yields to the exact ground state density and energy




Time dependent DFT for the study of GR

Linear Response Theory (Ring&Schuck)

Perturbing the initial static Hamiltonian Ho with a small time
dependent operator F(t):

H="Ho+ F(t) F(t) = fexp(—iwt)+ fTexp(iwt)

Will produce variations on the static density po linear with the
external operator F(t) in first approximation:

5p(t) = bpexp(—iwt) + 6p' exp(iwt)

Writting the Schroedinger equation using commutators

e Z: *) h¥(t) = ih¥(t) — [h,p] = ihp
ho¥ - [ho, po] = 0 o + F@: po + dp(t)] = ihép



Time dependent DFT for the study of GR

Linear Response Theory (Ring&Schuck)

Keeping the linear terms in the perturbation (F) and
Imposing that a Slater determinant satisfies p?2=p (only for
particle-hole or hole-particle excitations [GR- Many
coherent nh excitations!l) one could find:

(‘:‘-) — €Em + Ez)é‘pmt — fmz + Z sz ?,m’é‘pm y + me fi! 5sz*’
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( — € + Em)é‘p@m = Jim T Z Vzmz mm’épm’z’ + ‘/i,m’m%’(spzm

Oh
Vivw = Z
o P

5(0)

For F—>» 0 and solving the Egs. for &p one finds the
Random Phase Approximation where the
knowledge of Elp] is suffiient, no need to impose H.

®
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Advantadges and disadvantages of DFT

UNEDF http://unedf.mps.ohio-state.edu/

- ADVANTAGES OF DFT:

» exact theory that can be applied to the
::;;::?ralinnlnleractlnn WhOIe nUCIear Chart

Density Functional Theory * many-body problem mapped onto a one-
body problem without the need of explicitly
involving inter-nucleon interactions!!!
(computational cost and interpretation of
observables in terms of single-particle
properties)

« HK generalised in (almost all) possible
ways: time dependence, degenerate ground-
state, magnetic systems, finite T, relativistic
case ...

« any one body observable is within the
DFT framework (this includes also some
sum rules related to nuclear excitations)

Nuclear Landscape

- DISADVANTAGES OF DFT:

» various proofs of HK theorems do not give any clue on how to build the functional.

* no direct connection with realistic NN or NNN interaction if current approaches to EDF are
not improved (some attempts already exist)

* no systematic way of improvement (evaluate syst. Errors) so far.



Nuclear DFT: example

Write an energy density functional (EDF) in terms of the relevant
denisties for the nuclear problem: baryon density (p), spin density (s)
and density currents (j); keeping the basic symmetries (time reversal
invariance, invariance under space reflections and rotational invariance, as
well as Galilean or Lorentz invariance).

Elp(#), 7(7), Vo), J7),...] = o [ di 7*(F)
£ (), 7(F), Vo (), J (7).
£ ()

A bit of history:

- |n nuclear physics EDFs have been derived from two body interactions evaluated
at the Hartree-Fock level (expectation value of the Hamiltonian assuming a Slater
determinant for the wave function)

- However, one may well invent directly an EDF without the need of deriving it from a
Hamiltonian.



Nuclear DFT: example

How do | calculate the EoS?

- uniform matter: derivative terms of the density will be zero!! Among them spin-
orbit currents (J).

- Kinetic energy: uniform Fermi gas
- Spin-saturated: spin denisties zero.
- No Coulomb

EoS with a simplfied Skyrme EDF: 6=0 symmetric nuclear matter (pr=p»)
6=1 neutron matter (p=pn; pPr=0)

2 2\ 2/3 Free Fermi gas with
e(p,d) = % = % = % zhm (32 ) p2/3f5/3 < degeneracy 4 (2 from

spin and 2 from isospin)

arameters of the 1 g 5
:‘IOdel: tto, Xo, t:,t)t:, + _t(]p [2(3:0 + 2) — (2'1:[} “+‘ ].)f2] — to(l -|— :I:UPO')J(TI = 7"2)

and a typically fitted 8

to experimental data il 1
n binding energi 5 i
gnd charggeera?jiig = + 4_8t0[9a+1 [2(333 o 2) = (2333 C E ]-)f2] < gt?,(l I mBPJ)Pa(S(Tl — T'2)

s [T I



Reminder: Nuclear EoS

Unpolarized nuclear matter at zero temperature (101°%K—»1MeV) is
defined as the energy per nucleon (¢e) as a function of the neutron (o)
and proton (o») densities as (/sospin conserving Von = Vop = Vhp):

e(p.0) = e(p,0) + S(p)*|+ O[8"]  where p = p, + p, and § = L—LF
30 T T T T T T T T T p

It is customary to expand e(p,6) around
nuclear saturation density oo ~ 0.16 fm—3

J 1 _
e(p,0) = e(po, 0) + §K0$2 + O|p?®] where z = P10

Symmetry energy S(p)-~ 0

1
S(p)=J+ Lx + 5}{5},1113;2 + O[p?, 87

201

neutron matter
e(p, o=1)

10f

e (MeV)

Saturation

-3
(016 Tty ", ~16:0 MEW) Ko = how compressible is symmetric matter at oo

10

e(p,5=0) / - penalty energy for converting all protons

symmetric matter into neutrons in symmetric matter at po
. 1 ] 1 ] 1 ] 1 ] 1 .
% 0.05 o1 015 0.2 025 [ — neutron pressure in neutron matter at po
p (fm ™)
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Determination of the parameters;

theoretical errors and correlations

- Chiral EFT expansion allows for the estimation of the errors
associated to a given truncation in the determination of the
Hamiltonian.

- Most many-body techniques (except EDF) allow to estimate
the error associated to the method by evaluating the following (and
more complex) terms. Analogous to the expansion in the interaction,
think about (many-body) perturbation theory.

- All nuclear models are effective and, thus, parameters must
be determined (fitted to experiment).

- Two statistic approaches to this problem in the literature:

Frequentists concentrate on having methods guaranteed to work
most of the time, given minimal assumptions. Based on the ratio of
times we expect an event to occur (#successes / #experiment )
Bayesians try to make inferences that take into account all available
information and answer the question of interest given the particular data
set. Based on individual’s degree of belief of the occurrence of an event




Frequentist inference:

Covariance analysis: x? test

» Observables O used to calibrate the parameters P

m
Oihco. L Oll'ef.
X*(p) =) ( )
1=1

AO]{Cf.

» Assuming that the x* can be approximated by an hyper-parabola
around the minimum pg,

1

P) —X*(Po) = 5 }_(Pv—P0)dp, 0, X*(P) — Poy)

L)

Nal

]
where M = Eaplapsz (curvature m.) and & = M~ (error m.).

» errors between predicted observables A

mn
AA =D 3p AEL0p A

» correlations between predicted obsgrvables,
AB

\/CAA CBB

mn
where, Cap = (A(p) —A)(B(p) — B) ~ )_ 3, A&, 9y, B -
Y

CAB =

>



Example:

two typical EDF fitting protocols

SLy5-min: use constant error for a given observable

» Binding energies of **43Ca, °°Ni, '3%1328n and °®Pb with a
fixed adopted error of 2 MeV

» the charge radius of *©*3Ca, °°Ni and *°®Pb with a fixed
adopted error of 0.02 fm

» the neutron matter Equation of State calculated by Wiringa et
al. (1988) for densities between 0.07 and 0.40 fm > with an
adopted error of 10%

» the saturation energy (e(po) = —16.0 = 0.2 MeV) and density
(po = 0.160 + 0.005 fm ) of symmetric nuclear matter.

DD-ME-minl: use relative error for all observables

» binding energies, charge radii, diffraction radii and surface
thicknesses of 17 even-even spherical nuclei, 160, 40,48,
56’58Ni, SSSI', 902]:', 100,112,120,124,1 32811, 136X6, 144Sm and

202,208,214pp The assumed errors of these observables are

0.2%,0.5%,0.5%, and 1.5%, respectively.




Associated covariance matrix

SLy5-min 1 DDME-min1 3
E,(IVGQR) E (IVGQR)
E,(IVGDR) E,(IVGDR)
Arnp 0.8 -.u:: Arnp 0.8 E
L 2 L 8
g 2
SE(D(}) 0.6 O SZ(I:)O) (@]
m_,(IVGDR) S m,(IVGDR) S
© ©
E,(ISGMR) ®  E,(ISGMR) o
o o
Ko ‘-g’ Ko c_gu
E,(ISGQR) 2 E,(ISGQR) 2
m'/m & m p/m o
e(po) e(po)
Po Po
. T & & = T e E _E & 3 T T
E&_EO!E%%—'?%O Eg%csng% 299
TEg BS4 TEE s'eg ©s9% I3E
LLIH Lux ';I— Lu)( Llj-( Lux Lu>< c_"_ LUH |_le

Some examples on correlations between:

*egand S(py) =J:enlpp) = ey + J. SLyS fits ey, , DD-ME does not — Corr./Non Corr.

* Arnp and Ex (IVGDR): Ex(IVGDR) dependson S((p)) ~ ] — L{&) and k in a non-linear way — corr. may weaken

* Arnp and Ex (IVGQR): Ex (IVGQR) depends on S((p)) ~ ] — L{e) and m™ /m a non-linear way — corr. may weaken

* Arnp o< L/] is strongly correlated with J and L but NOT with «p ~ a/J + bL/] — corr. may weaken



Some numerical results

SLy5-min DDME-minl
A Ao o(Ap) Ao ol(Ap) units
SNM
Po 0.162 +  0.002 0.150 +  0.001 fm ™ >
e(po) —16.02 +  0.06 —16.18 +  0.03 MeV
m*/m 0.698 +  0.070 0.573 +  0.008
] 32.60 +  0.71 33.0 + 1.7 MeV
Ko 230.5 + 9.0 261 + 23 MeV
L 47.5 + 4.5 55 + 16 MeV
208 Pb
gISGMR 14.00 +  0.36 13.87 +  0.49 MeV
pISGQR 12.58 +  0.62 12.01 +  1.76 MeV
Arnp 0.1655 +  0.0069 0.20 +  0.03 fm
gIYGDR 13.9 + 1.8 14.64 +  0.38 MeV
m!VGPR 4,85 +  0.11 5.18 + 0.28 MeV ! fm?
glYORR 516 + 2.6 25.19 +  2.05 MeV

Statistical uncertainties depend on the fitting protocol, that is on the
I data (or pseudo-data) and associated errors used for the fits: Let

us sec an example...



Modifing the Y2 artificially:

— SLy5-a: xz as in SLy5-min except for the neutron EoS (relaxed the required accuracy = increasing associated error).

— SLy3-h: }(2 as in SLyS5-min except the neutron EoS (not employed) and used instead a tight constraint on the Arnp in 208 py,
(b)

9
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= =
o o
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2 2
Sz(Po) (] SZ(PO} O
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kS 5
E,(ISGMR) O E,(SGMR) o
8 3
KO g KO g
E,(ISGQR) E,(ISGQR) Z
* L] * Q
m /m o m /m 02 &
e(po) e(pg)
Po Po
0

. oc C o = o o . o T r = r o

£2E3Y385° £83 £2E3Y585° £83

T E @ a > @ R T E @ > @ sl

3 o i = = e = Tk
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P When a constraint on a property is relaxed, correlations of other observables with such a property should become
larger — SLy5-a: oy is now better correlated with Ary,

P> When a constraint on a property is enhanced —artificially or by an accurate experimental measurement—

correlations of other observables with such a property should become small — SLy5-b: Ary, , is not correlated
with any other observable



Systematic uncertainties:

Beyond statistical errors there exist other types of errors!

Differences among equally “good” models

* Up to now statistical errors from the fit. Is that the whole story?

2. 2 2
O = Ogtat - szst

* Differences between theory and experiment: model error or
systematic theoretical error - not allways possible.

* Differences among (reasonable) models —» proxy to model error

24F r=0.62 @731 .~ 10f '
o 23 I & ¢ =
B Al ] = d: o
® o 22 1S 8
0 ‘-E, i g ~ 8 o
s a2l s DDME] ~ | 2
E 205 e 7 ESD 7: %
o : o, 1 F : -
B 19 1 <= 6 g
g 1 ] | 1 ] 1 1 1 L. %

2016 02 024 028 032 0.2 0.16 02 024 028 03

Arnp (fm) Arnp (fm)
Correlation between models low Correlation between models high



Reminder from yesterday:

Dipole polarizability (Giant Dipole Resonance)

- Calculate the polarizzability (a), proportional to m.
from the dielectric theorem and Droplet Model (J=a.)

gme? A(r2)1/2 15
ap = m_q E1 - ] A_1/3
o maB) | my < 20T (14 2 =
J. Mever P. Quentin, and B. Jennings, Nucl. Phys. A 385. 269 |
9J 2?‘0
aa}’m(A} - T & xA: with x, = EA b ATTI,?;;M — [J - aqym(A)]Alﬁ(I " )
A(r?) 5ATnp + \/; SoF — Arapce
xp ~ —— |1+
12 2 (r2)1/2(1—1¢)

Polarizability must increase with the mass (for the dipole A3/3, for
the quadrupole A’/ and so on) and surface symmetry energy and
decrease with the bulk symmetry energy
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