

Experimental aspects of nuclear (giant) resonances

J. Gibelin LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France EJC 2022

- Giant Resonances Properties
- 2 Experimental considerations
- Example of experiments with stable nuclei
- Example of experiments with unstable nuclei
 - GMR (MAYA/ACTAR)
 - PDR (Coulomb excitation)
- 5 Other setup for GMR measurement
 - RIKEN/RCNP
 - MSU
 - EXL (FAIR/GSI)

Giant Resonances Properties

Discovered in 1937 Bothe et al. Z. Phys. 71 (1937) in photo-absorption ; Theoretically described in 1944 Migdal J. Phys, (USSR) 8 (1944)

Berman et al. Rev. Mod. Phys. 47 (1975)

Described/fitted by a Lorentzian (Breit-Wigner)

$$\sigma_{\gamma}(E) = \frac{\sigma_{\max}}{1 + \left[\frac{E^2 - E_r^2}{E\Gamma_r}\right]^2}$$

Complex plane: (E, Γ)

Discovered in 1937 Bothe et al. Z. Phys. 71 (1937) in photo-absorption ;

Theoretically described in 1944 Migdal J. Phys, (USSR) 8 (1944)

Discovered in 1937 Bothe et al. Z. Phys. 71 (1937) in photo-absorption ; Theoretically described in 1944 Migdal J. Phys, (USSR) 8 (1944)

Hydrodynamic models

Giant Resonances

Giant resonances are high-frequency collective excitation of atomic nuclei Macroscopic/Hydrodynamic models: Coherent vibrations nucleonic fluids (well described with liquid drop model(s))

Hydrodynamic models

Energies

Compression mode

Giant Resonances

Macroscopic/Hydrodynamic models: Coherent vibrations nucleonic fluids Compression modes: ISGMR, ISGDR

Giant Monopole Resonance

IsoScalar GDR

Compression mode

Giant Resonances

Macroscopic/Hydrodynamic models: Coherent vibrations nucleonic fluids Compression modes: ISGMR, ISGDR

Compression mode

Giant Resonances

Macroscopic/Hydrodynamic models: Coherent vibrations nucleonic fluids Compression modes: ISGMR, ISGDR

$$E_{\rm ISGMR} = \hbar \sqrt{\frac{K_A}{m < r^2 >}} \qquad \qquad E_{\rm ISGDR} = \hbar \sqrt{\frac{7}{3} \frac{K_A + \frac{27}{25} c_F}{m < r^2 >}}$$

Nuclear incompressibility

 K_A (finite matter) $\neq K_{\infty} = \left[9\rho_0^2 \frac{\partial^2(\mathscr{E}/A)}{\partial \rho^2}\right]_{\rho_0}$ (infinite matter)

ISGMR, ISGDR \Rightarrow Incompressibility + symmetry energy

Compression mode

Giant Resonances

Macroscopic/Hydrodynamic models: Coherent vibrations nucleonic fluids Compression modes: ISGMR, ISGDR

$$E_{\text{ISGMR}} = \hbar \sqrt{\frac{K_A}{m < r^2 >}} \qquad \qquad E_{\text{ISGDR}} = \hbar \sqrt{\frac{7}{3} \frac{K_A + \frac{27}{25} \epsilon_F}{m < r^2 >}}$$
Stringari Phys. Lett. B 108 (1982)

Nuclear incompressibility

$$K_{A} = K_{\infty} + K_{s}A^{-1/3} + K_{\tau} \underbrace{\left[\frac{N-Z}{A}\right]^{2}}_{\delta^{2}} + K_{c} \left[\frac{Z}{A^{1/3}}\right]^{2} \text{ (scaling model)}$$

ISGMR, ISGDR \Rightarrow Incompressibility + symmetry energy

Giant Monopole Resonances

Status: stables nuclei only

Giant Monopole Resonances

Incompressibility parameters

		Th	Shlomo		
K_{∞}	220	240	260	235 ± 20	244 ± 15
K_{τ}	-28 ± 104	-222 ± 166	-416 ± 112	-194 ± 158	-142 ± 133

Giant Monopole Resonances

Towards exotic nuclei

Experimental considerations

Selection rules

Selection rules

Selection rules

Selection rules

Selection rules

Selection rules

Historically GRs discovered by photon absorption (IVGDR)

Electromagnetic probes ? **GMR:** $\Delta L = \Delta S = 0 \Rightarrow \Delta J = 0 \text{ EM } \Rightarrow \text{ (virtual) photon}$ **GDR:** $\Delta L = 1 \& \Delta S = 0 \Rightarrow \Delta J = 1 \& \Delta \pi = (-1)^{\Delta L} = -1 \Rightarrow E1$ **SGDR:** $\Delta L = 1, \Delta S = 1, \Delta \pi = -1 \Rightarrow \Delta J = 0, 1, 2 \Rightarrow E1 \text{ or } M2$

Inelastic scattering (α, α')

$$\begin{cases} \vec{T}_i + \Delta \vec{T}_{GR} = \vec{T}_f \\ T_{z_i} + \Delta T_{z_{GR}} = T_{z_f} \end{cases} \text{ and } \begin{cases} \vec{T}_i + \vec{T}_{\alpha} = \vec{T}_f + \vec{T}_{\alpha'} \\ T_{z_i} + T_{z_{\alpha'}} = T_{z_f} + T_{z_{\alpha'}} \end{cases}$$

Selection rules

Historically GRs discovered by photon absorption (IVGDR)

Electromagnetic probes ?

GMR: $\Delta L = \Delta S = 0 \Rightarrow \Delta J = 0$ EM \Leftrightarrow (virtual) photon

GDR:
$$\Delta L = 1 \& \Delta S = 0 \Rightarrow \Delta J = 1 \& \Delta \pi = (-1)^{\Delta L} = -1 \Rightarrow E1$$

SGDR: $\Delta L = 1, \Delta S = 1, \Delta \pi = -1 \Rightarrow \Delta J = 0, 1, 2 \Rightarrow E1$ or M2

Inelastic scattering (α, α')

$$\begin{cases} \vec{T}_i + \Delta \vec{T}_{GR} = \vec{T}_f \\ T_{z_i} + \Delta T_{z_{GR}} = T_{z_f} \end{cases} \text{ and } \begin{cases} \vec{T}_i + \vec{T}_{\alpha} = \vec{T}_f + \vec{T}_{\alpha'} \\ T_{z_i} + T_{z_{\alpha}} = T_{z_f} + T_{z_{\alpha'}} \end{cases}$$

 $\Rightarrow \Delta \vec{T}_{GR} = \vec{T}_f - \vec{T}_i = \vec{T}_\alpha - \vec{T}_{\alpha'} \Rightarrow |T_\alpha - T_{\alpha'}| \le \Delta T_{GR} \le T_\alpha + T_{\alpha'} \Rightarrow 0 \le \Delta T_{GR} \le 2\mathcal{T}_\alpha$

Selection rules

Historically GRs discovered by photon absorption (IVGDR)

Electromagnetic probes ?

GMR: $\Delta L = \Delta S = 0 \Rightarrow \Delta J = 0$ EM \Leftrightarrow (virtual) photon

GDR:
$$\Delta L = 1 \& \Delta S = 0 \Rightarrow \Delta J = 1 \& \Delta \pi = (-1)^{\Delta L} = -1 \Rightarrow E1$$

SGDR: $\Delta L = 1, \Delta S = 1, \Delta \pi = -1 \Rightarrow \Delta J = 0, 1, 2 \Rightarrow E1$ or M2

Inelastic scattering (α, α')

$$\begin{cases} \vec{T}_i + \Delta \vec{T}_{GR} &= \vec{T}_f \\ T_{z_i} + \Delta T_{z_{GR}} &= T_{z_f} \end{cases} \text{ and } \begin{cases} \vec{T}_i + \vec{T}_{\alpha} &= \vec{T}_f + \vec{T}_{\alpha'} \\ T_{z_i} + T_{z_{\alpha}} &= T_{z_f} + T_{z_{\alpha'}} \end{cases}$$

 $\Rightarrow \Delta \vec{T}_{GR} = \vec{T}_f - \vec{T}_i = \vec{T}_\alpha - \vec{T}_{\alpha'} \Rightarrow |T_\alpha - T_{\alpha'}| \le \Delta T_{GR} \le T_\alpha + T_{\alpha'} \Rightarrow 0 \le \Delta T_{GR} \le 2\mathcal{T}_{\alpha'}$

 $\alpha(T=0)$: perfect probe for isoscalar modes $(+ S_{n,p,d...} \gtrsim 20 \text{ MeV})$

Selection rules

Historically GRs discovered by photon absorption (IVGDR)

Electromagnetic probes ?

GMR: $\Delta L = \Delta S = 0 \Rightarrow \Delta J = 0$ EM \Leftrightarrow (virtual) photon

GDR: $\Delta L = 1 \& \Delta S = 0 \Rightarrow \Delta J = 1 \& \Delta \pi = (-1)^{\Delta L} = -1 \Rightarrow E1$

SGDR: $\Delta L = 1, \Delta S = 1, \Delta \pi = -1 \Rightarrow \Delta J = 0, 1, 2 \Rightarrow E1$ or M2

Inelastic scattering

 $\alpha(T=0)$: perfect probe for isoscalar modes $(+ S_{n,p,d...} \gtrsim 20 \text{ MeV})$

d (T = 0): good probe for isoscalar modes also (but breaks! $S_n = S_p \approx 2 \text{MeV}$)

Selection rules

Historically GRs discovered by photon absorption (IVGDR)

Electromagnetic probes ?

GMR: $\Delta L = \Delta S = 0 \Rightarrow \Delta J = 0$ EM \Leftrightarrow (virtual) photon

GDR: $\Delta L = 1 \& \Delta S = 0 \Rightarrow \Delta J = 1 \& \Delta \pi = (-1)^{\Delta L} = -1 \Rightarrow E1$

SGDR: $\Delta L = 1, \Delta S = 1, \Delta \pi = -1 \Rightarrow \Delta J = 0, 1, 2 \Rightarrow E1$ or M2

Inelastic scattering

α(T = 0): perfect probe for isoscalar modes (+ $S_{n,p,d...} \gtrsim 20 \text{ MeV}$) **d** (T = 0): good probe for isoscalar modes also (but breaks! $S_n = S_p \approx 2 \text{ MeV}$) **proton** (T = 1/2): isoscalar and isovector mixed (used in conjonction)

More general probes

	$\Delta S = 0$ $\Delta T = 0$ $\Delta A = 0$	$\Delta S = 1$ $\Delta T = 0$ $\Delta A = 0$	$\Delta S = 0$ $\Delta T = 1$ $\Delta A = 0$	$\Delta S = 1$ $\Delta T = 1$ $\Delta A = 0$	$\Delta S \\ \Delta T \\ \Delta A = 2$
Variable	Number density	Spin density	lsovector density	lsovector spin density	Pair density
Property	Incompressibilit	Magnetism	Symmetry energy		Pair condensation
Probe	(α,α), (d,d)	(p,p), (⁶ Li, ⁶ Li*)	(⁷ Li, ⁷ Be*), (⁶ He, ⁶ Li*)	(p,n), (n,p), (d,2p)	$(\alpha, {}^{6}\text{He}),$ $(\alpha, {}^{6}\text{Li}),$ $(\alpha, d),$ $(\alpha, pn),$ $(d, \alpha),$ $(n, {}^{3}\text{He}),$ $({}^{3}\text{He},n)$

Selection rules

Historically GRs discovered by photon absorption (IVGDR)

Electromagnetic probes ? **GMR:** $\Delta L = \Delta S = 0 \Rightarrow \Delta J = 0 \text{ EM } \Leftrightarrow \text{ (virtual) photon}$ **GDR:** $\Delta L = 1 \& \Delta S = 0 \Rightarrow \Delta J = 1 \& \Delta \pi = (-1)^{\Delta L} = -1 \Rightarrow E1$ **SGDR:** $\Delta L = 1, \Delta S = 1, \Delta \pi = -1 \Rightarrow \Delta J = 0, 1, 2 \Rightarrow E1 \text{ or } M2$

Inelastic scattering

α(T = 0): perfect probe for isoscalar modes (+ $S_{n,p,d...} \gtrsim 20 \text{ MeV}$) **d** (T = 0): good probe for isoscalar modes also (but breaks! $S_n = S_p \approx 2 \text{ MeV}$) **proton** (T = 1/2): isoscalar and isovector mixed (used in conjonction)

Classical approach

Classical approach

The momentum transferred by α is : $\Delta \vec{p} = \vec{p}'_{\alpha} - \vec{p}_{\alpha}$.

Classical approach

Classical approach

 $\theta \propto l$

Angular distribution shape

With interferences

Sharp edge Fraunhofer (approximation w/o Coulomb)

Garg et al. Progress in Particle and Nuclear Physics 101 (2018) Bernstein (1969)

(Analogy w/ optics)

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \\ \frac{d\sigma}{d\Omega} \end{pmatrix}_{0^+ \to 0^+} \propto |J_0(qR_D)|^2, \\ \left(\frac{d\sigma}{d\Omega} \right)_{0^+ \to 1^-} \propto |J_1(qR_D)|^2, \\ \left(\frac{d\sigma}{d\Omega} \right)_{0^+ \to 2^+} \propto \left[\frac{1}{4} J_0(qR_D)^2 + \frac{3}{4} J_2(qR_D)^2 \right] \propto J_2^2(qR_D)$$
Angular distribution shape

With interferences

Sharp edge Fraunhofer (approximation w/o Coulomb)

Garg et al. Progress in Particle and Nuclear Physics 101 (2018) Bernstein (1969)

(Analogy w/ optics)

$$\left\{ \begin{array}{l} \left(\frac{d\sigma}{d\Omega} \right)_{0^+ \to 0^+} \propto \left| J_0 \left(qR_D \right) \right|^2, \\ \left(\frac{d\sigma}{d\Omega} \right)_{0^+ \to 1^-} \propto \left| J_1 \left(qR_D \right) \right|^2, \\ \left(\frac{d\sigma}{d\Omega} \right)_{0^+ \to 2^+} \propto \left[\frac{1}{4} J_0 \left(qR_D \right)^2 + \frac{3}{4} J_2 \left(qR_D \right)^2 \right] \propto J_2^2 \left(qR_D \right) \end{array} \right\} \Rightarrow \left(\frac{d\sigma_\ell}{d\Omega} \right) \propto J_\ell^2 \left(\theta \right)$$

Angular distribution shape

With interferences

Sharp edge Fraunhofer (approximation w/o Coulomb)

Garg et al. Progress in Particle and Nuclear Physics 101 (2018) Bernstein (1969)

(Analogy w/ optics)

In pratice: optical potential, DW ...

In pratice: optical potential, DW ...

Total wave function:

$$\psi_{\text{tot}}(\theta) \underset{r \to \infty}{\longrightarrow} \left[e^{ikz} + \underbrace{f(\theta)}_{\psi_s} \frac{e^{ikr}}{r} \right] e^{-i\omega t}$$

In pratice: optical potential, DW ...

Total wave function:

$$\psi_{\text{tot}}(\theta) \underset{r \to \infty}{\longrightarrow} \left[e^{ikz} + \underbrace{f(\theta)}_{\psi_s} \frac{e^{ikr}}{r} \right] e^{-i\omega t}$$

In pratice: optical potential, DW ...

Total wave function: $\psi_{\text{tot}}(\theta) \underset{r \to \infty}{\rightarrow} \left[e^{ikz} + \underbrace{f(\theta)}_{\psi_s} \frac{e^{ikr}}{r} \right] e^{-i\omega t}$

Angular distribution

$$\frac{d\sigma}{d\Omega} = \left| f\left(\boldsymbol{\theta}\right) \right|^2$$

In pratice: optical potential, DW ...

Wood saxon potential (w/o Coulomb)

In pratice: optical potential, DW ...

Wood saxon potential (w/o Coulomb)

To calculate ψ :

$$\left[-\frac{\hbar^2}{2\mu}\nabla^2 + \mathbf{V}(r)\right]\psi = E\psi$$

with ad minima

$$\mathbf{V}(r) = -\left(\mathcal{V} + i\mathcal{W}\right)F\left(\frac{r-R}{a}\right)$$

and

$$F(x) = \frac{1}{1 + e^x}$$

In pratice: optical potential, DW ...

Wood saxon potential (w/o Coulomb) To calculate ψ :

$$\left[-\frac{\hbar^2}{2\mu}\nabla^2 + \mathbf{V}(r)\right]\psi = E\psi$$

with ad minima

$$\mathbf{V}(r) = -\left(\mathcal{V} + i\mathcal{W}\right)F\left(\frac{r-R}{a}\right)$$

and

$$F(x) = \frac{1}{1 + e^x}$$

$$\psi = \sum_{l} \sum_{m=-l}^{l} \alpha_{l,m}(k) \frac{u_{l}(k,r)}{r} Y_{l}^{m}(\theta,\psi)$$

+ deformation/rotation + form factor ([Harakeh et al. Physical Review C 23 (1981)]).

J. Gibelin

EJC 2022

Giant Resonances

Experimental techniques?

⁶⁸Ni(α, α')⁶⁸Ni^{*}

Example of experiments with stable nuclei

Systematics on stable nuclei Garg et al. Progress in Particle and Nuclear Physics 101 (2018)

Systematics on stable nuclei Garg et al. Progress in Particle and Nuclear Physics 101 (2018)

Experimental details Itoh et al. Phys. Rev. C 68 (2003)

Experimental details

Experimental details Itoh et al. Phys. Rev. C 68 (2003)

EJC 202

Experimental details Itoh et al. Phys. Rev. C 68 (2003)

Analysis details Itoh et al. Phys. Rev. C 68 (2003)

Analysis details Itoh et al. Phys. Rev. C 68 (2003)

Example of experiments with unstable nuclei

Reverse kinematics \Rightarrow very low energy recoil \Rightarrow gas detector/target!

EJC 202

Gas detector w/gas = target

Pros

High efficiency (3D) Low detection threshold Thick target (≈10 mg/cm²)

Cons (as for MAYA)

Beam rate limited (10⁵ pps) Capricious (!)

Ξ

$283 \times 258 \times 200 \text{ mm}^3 \equiv 30 \text{ L of}$	
ças	
⇒ thick target	
\Rightarrow gas detector	

 $283 \times 258 \times 200 \text{ mm}^3 \equiv 30 \text{ L of}$ gas \Rightarrow thick target \Rightarrow gas detector

Inside :

2D proj. (honeycomb struct.)

 $283 \times 258 \times 200 \text{ mm}^3 \equiv 30 \text{ L of}$ gas \Rightarrow thick target \Rightarrow gas detector

Inside :

2D proj. (honeycomb struct.)

3D using drift time

 $283 \times 258 \times 200 \text{ mm}^3 \equiv 30 \text{ L of}$ gas \Rightarrow thick target \Rightarrow gas detector

Inside :

2D proj. (honeycomb struct.)

3D using drift time

Ancillary detectors :

Diamond

Demonchy et al. Nucl. Instrum. Methods Phys. Res., Sect. A 583 (2007)

MAYA

 $283 \times 258 \times 200 \text{ mm}^3 \equiv 30 \text{ L of}$ gas \Rightarrow thick target \Rightarrow gas detector

Inside :

2D proj. (honeycomb struct.)

3D using drift time

Ancillary detectors :

Diamond

Drift chamber

Demonchy et al. Nucl. Instrum. Methods Phys. Res., Sect. A 583 (2007)

MAYA

 $283 \times 258 \times 200 \text{ mm}^3 \equiv 30 \text{ L of}$ gas \Rightarrow thick target \Rightarrow gas detector

Inside :

2D proj. (honeycomb struct.)

3D using drift time

Ancillary detectors :

Diamond

Drift chamber

 4×5 Si (5×5 cm², 700 μ m)

Demonchy et al. Nucl. Instrum. Methods Phys. Res., Sect. A 583 (2007)

MAYA

 $283 \times 258 \times 200 \text{ mm}^3 \equiv 30 \text{ L of}$ gas \Rightarrow thick target \Rightarrow gas detector

Inside :

2D proj. (honeycomb struct.)

3D using drift time

Ancillary detectors :

Diamond

Drift chamber

 4×5 Si (5×5 cm², 700 μ m)

 8×10 Csl (2.5 × 2.5 cm²)

Setup: Improvement

Mask

Beam energy loss \gg scattered particles \Rightarrow dynamics issues.

Pancin et al. J. Instrum. 7 (2012)

Setup: Improvement

Mask

Beam energy loss \gg scattered particles \Rightarrow dynamics issues.

Pancin et al. J. Instrum. 7 (2012)
Mask

Beam energy loss \gg scattered particles \Rightarrow dynamics issues.

Pancin et al. J. Instrum. 7 (2012)

Mask

Beam energy loss \gg scattered particles \Rightarrow dynamics issues.

Pancin et al. J. Instrum. 7 (2012)

Mask

Beam energy loss \gg scattered particles \Rightarrow dynamics issues.

Pancin et al. J. Instrum. 7 (2012)

Mask

Bias difference (ΔV) added to mask central wire ; Energy $\propto N_{e^-}$ [Pancin et al. J. Instrum. 7 (2012)]

Source

Retractable source, allows regular monitoring.

Gas: Helium feasible with CF₄ as quencher

With MAYA and during experiment \sim 500mbar, 5% CF₄.

Roger et al. Nucl. Instrum. Methods Phys. Res., Sect. A 638 (2011)

Trajectory reconstruction

Range measurement

In case of a "clear" Bragg pic: smoothing w/ spline \Rightarrow error ≤ 1 mm

Otherwise: depends on the experiment/simulation (typically last charge/position combinaison...)

First order

intersection point of tracks

Refinement

enhancement of the deposited charge around the vertex. (simulation)

Vertex

Thanks to the mask, beam can be seen and <u>substracted</u>, to allow fitting of small tracks (few pads)

Vertex

Thanks to the mask, beam can be seen and <u>substracted</u>, to allow fitting of small tracks (few pads)

Mounting MAYA !

https://www.youtube.com/watch?v=aUxC68zb6sI

⁵⁶Ni: ISGMR & ISGDR

⁵⁶Ni: ISGMR & ISGDR

⁵⁶Ni: ISGMR & ISGDR

⁶⁸Ni: ISGMR

One proposal: two experiments (M. Vandebrouck's PhD)

⁶⁸Ni(α , α')⁶⁸Ni^{*}:

⁶⁸Ni(*d*, *d*′)⁶⁸Ni*:

 $E^* = 12.9 \pm 1.0$ & 21.1 ± 1.9 MeV

 $E^* = 12.6 \pm 0.3$ & 20.8 ± 0.6 MeV

⁶⁸Ni: ISGMR

One proposal: two experiments (M. Vandebrouck's PhD)

⁶⁸Ni(α , α')⁶⁸Ni*: ⁶⁸Ni(d, d')⁶⁸Ni*:

 $E^* = 12.9 \pm 1.0$ & 21.1 ± 1.9 MeV

 $E^* = 12.6 \pm 0.3$ & 20.8 ± 0.6 MeV

⁶⁸Ni: ISGMR

One proposal: two experiments (M. Vandebrouck's PhD)

⁶⁸Ni(α , α')⁶⁸Ni*: ⁶⁸Ni(d, d')⁶⁸Ni*:

 $E^* = 12.9 \pm 1.0$ & 21.1 ± 1.9 MeV

 $E^* = 12.6 \pm 0.3$ & 20.8 ± 0.6 MeV

ISGMR : summary in Nickel's chiain

⁵⁴Ni ⁵⁵Ni ⁵⁶Ni ⁵⁷Ni ⁵⁸Ni ⁵⁹Ni ⁶⁰Ni ⁶¹Ni ⁶²Ni ⁶³Ni ⁶⁴Ni ⁶⁵Ni ⁶⁶Ni ⁶⁷Ni

Experi	iment :
Fitting	method

MDA

Theory :

- QRPA (S. Peru, private comm.) RQRPA (E. Litvinova, private comm.)

⁶⁸Ni

⁶⁹Ni ⁽⁷⁰Ni ⁽⁷¹Ni ⁽⁷²Ni

ISGMR : summary in Nickel's chiain

⁵⁴Ni ⁵⁵Ni ⁵⁶Ni ⁵⁷Ni ⁵⁸Ni ⁵⁹Ni ⁶⁰Ni ⁶¹Ni ⁶²Ni ⁶³Ni ⁶⁴Ni ⁶⁵Ni ⁶⁶Ni ⁶⁷Ni ⁶⁸Ni

	Experiment : Fitting method MDA
o A	Theory : QRPA (S. Peru, private comm.) RQRPA (E. Litvinova, private comm.)

⁶⁹Ni ⁽⁷⁰Ni ⁽⁷¹Ni ⁽⁷²Ni

More points needed?

300 200 100

Column

20

20 40 60

Column

 128×128 pixels of 2 mm² 16384 channels in a square of 25.6 x 25.6 cm² (~ 10 more than MAYA) Dedicated (compact) electronics

How to identify each individual track ?

Identification and reconstruction of tracks

RANSAC method: iterative method to find the tracks

2D example

Identification and reconstruction of tracks

RANSAC method: iterative method to find the tracks

2D example

Mauss PhD (2018)

Identification and reconstruction of tracks

RANSAC method: iterative method to find the tracks

2D example

Identification and reconstruction of tracks

RANSAC method: iterative method to find the tracks

3D example iterative results

Identification and reconstruction of tracks

RANSAC method: iterative method to find the tracks

3D example iterative results

Identification and reconstruction of tracks

RANSAC method: iterative method to find the tracks

3D example iterative results

J. Gibelin

Identification and reconstruction of tracks

RANSAC method: iterative method to find the tracks

3D example iterative results

Mauss PhD (2018)

Identification and reconstruction of tracks

RANSAC method: iterative method to find the tracks

3D example iterative results

Mauss PhD (2018)

Measurement of the kinematics parameters

 $^{58}\text{Ni}(\alpha,\,\alpha)^{58}\text{Ni}^{\star}$ dataset

Kinematics: lab angle vs alpha energy

$^{58}\text{Ni}(\alpha,\,\alpha)^{58}\text{Ni}^{\star}$ dataset

Kinematics: lab angle vs alpha energy

$^{58}\text{Ni}(\alpha,\,\alpha)^{58}\text{Ni}^{\star}$ dataset

Kinematics: lab angle vs alpha energy

Letter of Intent/Proposal

"Yakitori" (or "Brochette" ["Skewer"]) mode

"Yakitori" (or "Brochette" ["Skewer"]) mode

"Yakitori" (or "Brochette" ["Skewer"]) mode

$\mathsf{GMR} + \mathsf{ISGDR} \mathsf{ w} / \mathsf{ ACTAR}$

"Yakitori" (or "Brochette" ["Skewer"]) mode

GMR + ISGDR w / ACTAR

ISGDR + IVGDR w/ solid target & γ -rays

Illustration

GDR

PDR

Illustration

²⁶₁₀Ne case

Invariant mass method:

$$M_{\text{inv}} = M_0 + E^{\star} = \sqrt{\sum_i E_i^2 - \sum_i \vec{p}_i^2} \Rightarrow E^{\star} \sim E_{\text{rel}}(^{25}\text{Ne}, n) + E_{\gamma}(^{25}\text{Ne})$$

²⁶₁₀Ne case

Invariant mass method:

$$M_{\rm inv} = M_0 + E^{\star} = \sqrt{\sum_i E_i^2 - \sum_i \vec{p}_i^2} \Rightarrow E^{\star} \sim E_{\rm rel}({}^{25}{\rm Ne}, n) + E_{\gamma}({}^{25}{\rm Ne})$$

²⁶₁₀Ne case

Invariant mass method:

$$M_{\rm inv} = M_0 + E^{\star} = \sqrt{\sum_i E_i^2 - \sum_i \vec{p}_i^2} \Rightarrow E^{\star} \sim E_{\rm rel}(^{25} \text{Ne}, n) + E_{\gamma}(^{25} \text{Ne})$$

 $E_x \sim 9 \,\text{MeV}$ and $S_{\text{TRK}} \sim 5 \,\%$

Pygmy properties vs skin thickness

Results

 $E_x \sim 9 \,\text{MeV}$ and $S_{\text{TRK}} \sim 5 \,\%$

Pygmy properties vs skin thickness

Results

Other setup for GMR measurement

RCNP/Grand Raiden

$$K_A - K_{\text{Coul}} Z^2 A^{-4/3} \sim$$

 $K_{\text{vol}} (1 - A^{-1/3}) + K_{\tau} [(N - Z)/A]^2$

 $K_{\rm Coul} \sim {\rm cst}$

RCNP/Grand Raiden

$$K_A - K_{\text{Coul}} Z^2 A^{-4/3} \sim$$

 $K_{\text{vol}} (1 - A^{-1/3}) + K_{\tau} [(N - Z)/A]^2$

 $K_{\rm Coul} \sim {\rm cst}$

RCNP/Grand Raiden

 $K_{\rm Coul} \sim {\rm cst}$

RCNP/Grand Raiden

 $K_{\rm Coul} \sim {\rm cst}$

EJC 2022

EJC 2022

NEAT! (yEt another Active Target!)

NEAT! (yEt another Active Target!)

Concept: small number of readout channel (relatively low definition)

NEAT! (yEt another Active Target!)

(RAW)

(preliminary)Results ¹³²Sn(d,d') (Courtesy of S. OTA [RCNP/Japan])

Excitation energy $E_x \sim 0 \text{ MeV}(\sigma = 0.6 \text{ MeV})$

(preliminary) Results ¹³²Sn(d,d')

Lorentzian fit (GMR + GQR)

Compressibility

AT-TPC (Active Target Time Projection Chamber) – MSU

AT-TPC (Active Target Time Projection Chamber) – MSU

Ayyad et al. Nucl. Phys. A 954 (2020)

AT-TPC (Active Target Time Projection Chamber) – MSU

Ayyad et al. Nucl. Phys. A 954 (2020)

(FAIR/GSI)

- Giant Resonances Properties
- 2 Experimental considerations
- Example of experiments with stable nuclei
- Example of experiments with unstable nuclei
 - GMR (MAYA/ACTAR)
 - PDR (Coulomb excitation)
- 5 Other setup for GMR measurement
 - RIKEN/RCNP
 - MSU
 - EXL (FAIR/GSI)

References