

Lesson II: Hadronic scale, experimental point of view: **From high-energy lepton scattering to nucleon pressure** After the introduction of the different types of experiments to reveal the nucleon structure, the focus is on Exclusive Reactions related to GPDs:

- Compton Form Factors measurements
 - Correlation between position and momentum of partons
 - Angular momentum and nucleon pressure

Nicole d'Hose (Irfu, CEA Université Paris-Saclay)

D. Mueller *et al*, Fortsch. Phys. 42 (1994)
X.D. Ji, PRL 78 (1997), PRD 55 (1997)
A. V. Radyushkin, PLB 385 (1996), PRD 56 (1997)

Xiang-Dong Ji

Dieter Mueller

Anatolii Radyushkin

D. Mueller *et al*, Fortsch. Phys. 42 (1994)
X.D. Ji, PRL 78 (1997), PRD 55 (1997)
A. V. Radyushkin, PLB 385 (1996), PRD 56 (1997)

DVCS: $\ell p \rightarrow \ell' p' \gamma$ the golden channel because it interferes with the Bethe-Heitler process

also meson production $\ell p \rightarrow \ell' p' \pi, \rho, \omega \text{ or } \phi \text{ or } J/\psi...$

The GPDs depend on the following variables:

x: average

ξ: transferred

 quark longitudinal momentum fraction

t: proton momentum transfer squared related to b₁ via Fourier transform

The variables measured in the experiment:
$$\begin{split} & E_{\ell}, \ Q^2, \ x_{\rm B} \sim 2\xi \ /(1+\xi), \\ & t \ (or \ \theta_{\gamma^*\gamma}) \ and \ \phi \ (\ensuremath{\ell\ell}\ \ensuremath{\ell}\ \ensuremath{\rho}\ \ensuremath{\phi}\ \ensuremath{\rho}\ \ensuremath{\phi}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\phi}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\phi}\ \ensuremath{\phi}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\phi}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\phi}\ \ensuremath{\rho}\ \ensuremath{\rho}\ \ensuremath{\phi}\ \ensuremath{\phi}\ \ensuremath{\rho}\ \ensuremath{\phi}\ \ensuremath{\phi}\$$

GPDs and the other observables

GPDs and the other observables

GPDs and 3D imaging

GPDs and Energy-Momentum Tensor and Confinement

GPDs and Energy-Momentum Tensor and Confinement

GPDs can provide an experimental answer by exploiting their equivalence to the gravitational form factors of the nucleon energy-momentum-tensor (fundamental nucleon properties)

$$2\mathbf{J}^{q} = \lim_{t \to 0} \int x \left(\mathbf{H}^{q} \left(x, \xi, t \right) + \mathbf{E}^{q} \left(x, \xi, t \right) \right) dx$$

$$\int_{-1}^{1} dx \ x H^{a}(x,\xi,t) = A^{a}(t) + \xi^{2} d_{1}^{a}(t)$$

$$\int_{-1}^{1} dx \ x E^{a}(x,\xi,t) = 2J_{+}^{a}(t) - A^{a}(t) - \xi^{2} d_{1}^{a}(t)$$
Angular momentum Force & Pressure distribution
$$M. \text{ Polyakov, P. Schweitzer, Int.J.Mod.Phys. A33 (2018)}$$

$$r^{2}p(r) \text{ in GeV fm}^{-1}$$

0.01 $\mathrm{d}r\,r^2p(r)=0$ 0.005 confining pion cloud 0 Pressure quark In χQSM -0.005 Frepulsive Distribution 0.5 r in fm

> The pion field provides the confining pressure at the proton periphery (pions are the Goldstone bosons of the spontaneous chiral symmetry breaking) 8

The amplitude DVCS at LT & LO in α_s (GPD **H**) : **Real part Imaginary part** $\mathcal{H} = \int_{t,\xi \text{ fixed}}^{+1} dx \ \frac{H(x,\xi,t)}{x-\xi+i\varepsilon} = \mathcal{P} \int_{-1}^{+1} dx \ \frac{H(x,\xi,t)}{x-\xi} - i \ \pi \ H(x = \pm \xi,\xi,t)$ In an experiment we measure

Compton Form Factor ${\cal H}$

$$\operatorname{Re}\mathcal{H}(\xi,t) = \pi^{-1} \int_0^1 dx \, \frac{2x \, \operatorname{Im}\mathcal{H}(x,t)}{x^2 - \xi^2} + \Delta(t)$$

M. Burkardt, PRD66(2002)

M. Polyakov, P. Schweitzer, Int.J.Mod.Phys. A33 (2018)

With unpolarized target:

Belitsky, Müller, Kirner, NPB629 (2002)

$$\begin{aligned} d\sigma^{BH} &\propto c_0^{BH} + c_1^{BH} \cos \phi + c_2^{BH} \cos 2\phi \\ d\sigma^{DVCS}_{unpol} &\propto c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi \\ d\sigma^{DVCS}_{pol} &\propto s_1^{DVCS} \sin \phi \\ \text{Re } I &\propto c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi \\ \text{Im } I &\propto s_1^I \sin \phi + s_2^I \sin 2\phi \end{aligned}$$

With both e^{-} and e^{-} beams we can build:

• beam spin diff

 $\Delta \equiv d\sigma \leftarrow + d\sigma \rightarrow$

$$\begin{aligned} d\sigma^{BH} &\propto c_0^{BH} + c_1^{BH} \cos \phi + c_2^{BH} \cos 2\phi \\ d\sigma_{unpol}^{DVCS} &\propto c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi \\ d\sigma_{pol}^{DVCS} &\propto s_1^{DVCS} \sin \phi \\ Re \ I &\propto c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi \\ Im \ I &\propto s_1^I \sin \phi + s_2^I \sin 2\phi \end{aligned}$$

With both e^{-} and e^{-} beams we can build:

• beam spin diff

 $\Delta \equiv d\sigma \leftarrow + d\sigma \rightarrow$

2 beam spin sum

 $\Sigma \equiv d\sigma + d\sigma$

 $\begin{aligned} d\sigma^{BH} &\propto c_0^{BH} + c_1^{BH} \cos \phi + c_2^{BH} \cos 2\phi \\ d\sigma^{DVCS}_{unpol} &\propto c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi \\ d\sigma^{DVCS}_{pol} &\propto s_1^{DVCS} \sin \phi \\ Re \ I &\propto c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi \\ Im \ I &\propto s_1^I \sin \phi + s_2^I \sin 2\phi \end{aligned}$

 $\gamma_{(+)}$ **GPDs** HT,Twist-3 suppressed by 1/Q γ* ⁴ ^{Q2} (+,-) ⁴ $\gamma_{(+)}$ **GPDs** NLO.Twist-2 double helicity flip suppressed by α_s

With both μ^{+} and μ^{-} beams we can build:

• beam charge-spin sum $\Sigma \equiv d\sigma \stackrel{+}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow}$

$$\begin{aligned} d\sigma^{BH} &\propto c_0^{BH} + c_1^{BH} \cos \phi + c_2^{BH} \cos 2\phi \\ d\sigma^{DVCS}_{unpol} &\propto c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi \\ d\sigma^{DVCS}_{pol} &\propto s_1^{DVCS} \sin \phi \\ \text{Re } I &\propto c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi \\ \text{Im } I &\propto s_1^I \sin \phi + s_2^I \sin 2\phi \end{aligned}$$

 $\gamma_{(+)}$ GPDs HT,Twist-3 suppressed by 1/Q $\gamma^{*}_{(+,-)}\gamma^{*}_{+,-)}\gamma^{$ $\gamma_{(+)}$ GPDs NLO, Twist-2 double helicity flip suppressed by α_s

With both μ^{+} and μ^{-} beams we can build:

 $\begin{array}{l} \bullet \text{ beam charge-spin sum} \\ \Sigma \equiv d\sigma \stackrel{+}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow} \\ \bullet \text{ difference} \\ \Delta \equiv d\sigma \stackrel{+}{\leftarrow} - d\sigma \stackrel{-}{\rightarrow} \\ \end{array} \begin{array}{l} d\sigma \stackrel{DVCS}{unpol} \propto c_0^{DVCS} + c_1^{D} \\ d\sigma \stackrel{DVCS}{unpol} \propto c_0^{DVCS} + c_1^{D} \\ \hline d\sigma \stackrel{DVCS}{pol} \propto s_1^{DVCS} \sin \phi \\ \text{Re } I \propto c_0^{I} + c_1^{I} \cos \phi \\ \text{Im } I \propto s_1^{I} \sin \phi + s \end{array}$

^{BH}
$$\propto c_0^{BH} + c_1^{BH} \cos \phi + c_2^{BH} \cos 2\phi$$

^{CS} $\propto c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi$
^{CS} $\propto s_1^{DVCS} \sin \phi$
 $e I \propto c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi$
 $h I \propto s_1^I \sin \phi + s_2^I \sin 2\phi$

 $\gamma_{(+)}$ GPDs HT,Twist-3 suppressed by 1/Q γ* ³ ^{Q2} (+,-) ⁴ $\gamma_{(+)}$ GPDs NLO, Twist-2 double helicity flip suppressed by α_s

With unpolarized target, playing with beam charge and polarisation, we can reach: $S_1^I \propto Im \mathcal{A}$ $\mathcal{A} = F_1 \mathcal{H} + \xi (F_1 + F_2) \widetilde{\mathcal{H}} - t/4m^2 F_2 \mathcal{E}$ **GPDs** $c_1^I \propto Re \mathcal{A}$ neutron proton $x_{\rm B} \sim 2\xi / (1+\xi)$ F1 (t=0)= 1 F1 (t=0)= 0 F2 (t=0)= -1.91 t small; $t/Q^2 < 0.2$ F2 (t=0)= +1.79 with a proton target $\mathcal{A} \rightarrow \mathcal{F}_1 \mathcal{H}$ at small t and x_B for proton $F_{\mathcal{E}}$ is maximized \bigstar with a "neutron" target ${m F}$ for ${m {\cal H}}$ or ${m {\widetilde {\cal H}}}$ or ${m {\cal E}}$ for quark flavor in the proton $\mathcal{F}^{u} = \mathcal{F}_{p}^{u} = \mathcal{F}_{n}^{d}$ u-d flavor separation of GPD contributions (s <<) $\mathcal{F}_{proton} = 4/9 \ \mathcal{F}^{u} + 1/9 \ \mathcal{F}^{d} + 1/9 \ \mathcal{F}^{s}$ $\mathcal{F}_{neutron} = 4/9 \ \mathcal{F}^{d} + 1/9 \ \mathcal{F}^{u} + 1/9 \ \mathcal{F}^{s}$ $\mathcal{F}^{u} = 9/15 \left[4 \mathcal{F}_{proton} - \mathcal{F}_{neutron} \right]$ $\mathcal{F}^{d} = 9/15 \left[4 \mathcal{F}_{peutron} - \mathcal{F}_{proton} \right]$ e_{μ}^{2} e_{d}^{2} e_{c}^{2}

2001: First DVCS Beam Spin Asymmetries at Hermes and Jlab

Validate the dominance of the handag contribution

Fit and VGG model: Vanderhaeghen, Guichon, Guidal,...

PRL80(1998), PRD60(1999), PPNP47(2001), PRD72(2005)

Precise t measurement (related to b_{\perp}) $|t| < Q^2$

 $t = (p-p')^2 = (q-q')^2 < 0$ $|t|_{min} \sim m_p^2 x_B^2 / (1-x_B)$ if $x_B/Q <<1$

Fixed target mode slow recoil proton

with forward outgoing photon ($\theta_{\gamma^*\gamma}$ in the Lab) t= $(q-q')^2 = -Q^2 - 2 E_{\gamma} (v-q \cos \theta_{\gamma^*\gamma}) = \frac{-Q^2 - 2 v (v-q \cos \theta_{\gamma^*\gamma})}{1 + 1/m_p (v-q \cos \theta_{\gamma^*\gamma})}$

with recoiling proton $t = (p-p')^2 = 2m_p (m_p - E_p)$ Better resolution at small t

But $|t|_{min exp}$ to escape target cell to be detected

if both detection use of kinematical fit |t|=0

|t|=0.064 GeV² P_p=255 MeV/c |t|=0.6 GeV² P_p=838 MeV/c E_p=0.972 GeV E_p=1.257 GeV

GPDs

γ* ∿ (q) ∿

γ_(q')

Collider mode e-p forward fast proton

t = (p-p')² need detection of the fast proton at forward angle very close to the beam with dedicated detectors as "Roman Pot"

Ex: Jlab $x_{B} = 0.1, 0.2, 0.36 |t|_{min} \sim 0.01, 0.044, 0.16 \text{ GeV}^{2} |t|_{min \exp} \sim 0.064 \text{ GeV}^{2}$ COMPASS $x_{B} = 0.01 |t|_{min} \sim 10^{-4} \text{ GeV}^{2}$ $|t|_{min \exp} \sim 0.064 \text{ GeV}^{2}$ EIC $x_{B} = 0.0001 |t|_{min} \sim 10^{-8} \text{ GeV}^{2}$ need a dedicated detector in the forward direction

Selection of the exclusive process $l p \rightarrow l + \gamma + p_{slow}$

If the slow recoiling proton is not detected, building of Missing Mass $M_x^2 = (P_{\ell} + P_p - P_{\ell} - P_{\gamma})^2$

 $\ell p \rightarrow \ell' + \gamma (+p')$ for DVCS + BH

Contamination from π^0 decay:

- $\ell p \rightarrow \ell' + \gamma (+ \gamma + p')$ exclusive π^0
- $\ell p \rightarrow \ell' + \gamma (+ \gamma + p' + ...)$ sidis π^0
- $\ell p \rightarrow \ell' + \gamma$ (+ Δ^+) associated DVCS + BH

Selection of the exclusive process $l p \rightarrow l + \gamma + p_{slow}$

Take benefit of the overconstrained kinematics

Pmiss = $P\mu - P\mu' - P\gamma$ compared to the direct measurement of proton momentum

Entries / 40 mrad Data (a) Monte Carlo 100 π⁰ background 50 $\Delta \Phi = \Phi^{\text{spectr}} - \Phi^{\text{RPD}}$ 0 -0.5 0.0 0.5 -1.01.0 $\Delta \Phi$ (rad) Entries / 25 MeV/c $\Delta p_{T} = p_{T}^{spectr} - p_{T}^{RPD}$ Data (b) Monte Carlo π⁰ background 100 50 -0.6 -0.2 0.0 0.2 0.4 0.6 -0.4

 $\Delta p_{T} (\text{GeV}/c)$

Experimental Setup at Hermes

Hydrogen: unpolarised, long and transversely polarised Deuterium: unpolarised

2001-2012: A complete set of DVCS <u>asymmetries</u> at Hermes

HERMES 27 GeV provided a complete set of observables 2001: 1st DVCS publication as CLAS & H1 2007: end of data taking 2012: still important publications JHEP 07 (2012) 032 A_C A_{LU} JHEP10(2012) 042 A_{LU} with recoil detection (2006-7)

Note: DVCS off **the neutron** allows:

- \checkmark access to E
- ✓ flavor decomposition

Experimental Setup at JLab

Experimental Setup at Jlab -HallA

2004-2016: Beam Spin Sum and Diff of DVCS - HallA

2010-2017: Beam Spin Sum and Diff of DVCS - HallA

E07-007 Hall-A experiment in 2010 with magnetic spectrometer

Defurne et al., Nature Communications 8 (2017) 1408

 $x_B = 0.36$, Q²= 1.75 GeV², -t= 0.30 GeV² Ebeam=5.55 GeV (fit also uses data at 4.455 GeV)

Beam energy dependence study at fixed x_B and Q^2

- Separate DVCS from Int terms, C₀^{DVCS} from C₀^I
- Separate HT and NLO from LT coefficients

Unpolarized cross section

$$d^{4}\sigma = d\sigma^{\leftarrow} + d\sigma^{\rightarrow} \propto d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + \text{Re } I$$

$$\longrightarrow d\sigma^{BH} + c_{0}^{DVCS} + c_{1}^{DVCS} \cos \phi + c_{2}^{DVCS} \cos 2\phi$$

$$+ c_{0}^{I} + c_{1}^{I} \cos \phi + c_{2}^{I} \cos 2\phi + c_{3}^{I} \cos 3\phi$$

Helicity Dependent cross section

$$\Delta^{4}\sigma = d\sigma^{\leftarrow} - d\sigma^{\rightarrow} \propto d\sigma^{DVCS}_{pol} + \operatorname{Im} I$$
$$\longrightarrow s_{1}^{DVCS} \sin\phi + s_{1}^{I} \sin\phi + s_{2}^{I} \sin 2\phi$$

2 solutions: higher-twist OR next-to-leading order

2010-2017: Beam Spin Sum and Diff of DVCS - HallA

E07-007 Hall-A experiment in 2010 with magnetic spectrometer

Defurne et al., Nature Communications 8 (2017) 1408

x_B=0.36, Q²= 1.75 GeV², -t= 0.30 GeV² Ebeam=5.55 GeV (fit also uses data at 4.455 GeV)

Beam energy dependence study at fixed $x_{\scriptscriptstyle B}$ and Q^2

- Separate DVCS from Int terms, C₀^{DVCS} from C₀^I
- Separate HT and NLO from LT coefficients

Unpolarized cross section

$$d^{4}\sigma = d\sigma^{\leftarrow} + d\sigma^{\rightarrow} \propto d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + \text{Re } I$$

$$\longrightarrow d\sigma^{BH} + c_{0}^{DVCS} + c_{1}^{DVCS} \cos \phi + c_{2}^{DVCS} \cos 2\phi$$

$$+ c_{0}^{I} + c_{1}^{I} \cos \phi + c_{2}^{I} \cos 2\phi + c_{3}^{I} \cos 3\phi$$

Helicity Dependent cross section

$$\Delta^{4}\sigma = d\sigma^{\leftarrow} - d\sigma^{\rightarrow} \propto d\sigma_{pol}^{DVCS} + \operatorname{Im} I$$
$$\longrightarrow s_{1}^{DVCS} \sin \phi + s_{1}^{I} \sin \phi + s_{2}^{I} \sin 2\phi$$

2 solutions: higher-twist OR next-to-leading order

today: Beam Spin Sum and Diff of DVCS - HallA @12GeV

E12-06-114 Hall-A experiment in 2014-2016 with magnetic spectrometer

Georges et al., PRL128 (2022) 252002

Measurements for **3 high x_B=0.36, 0.48, 0.60** at 2 or 3 or 4 high Q² (or E_{beam}) in 3 or 5 bins in t in 24 bins in φ .

Fit for constant (xB, t) using different beam energies (and Q²) to separate DVCS², Interf. and BH Formalism: Braun-Manashov-Müller-Pirnay, PRD 89, 074022 (2014)

Prediction:

KM15: global fit of the world data K. Kumericki and D. Mueller, EPJ Web Conf. 112 (2016) 01012

Setting	Kin-36-1	Kin-36-2	Kin-36-3	Kin-48-1	Kin-48-2	Kin-48-3	Kin-48-4	Kin-60-1	Kin-60-3
x_B	0.36			0.48				0.60	
E_b (GeV)	7.38	8.52	10.59	4.49	8.85	8.85	10.99	8.52	10.59
$Q^2 \; ({ m GeV}^2)$	3.20	3.60	4.47	2.70	4.37	5.33	6.90	5.54	8.40
E_{γ} (GeV)	4.7	5.2	6.5	2.8	4.7	5.7	7.5	4.6	7.1
$\left -t_{min} \; (\text{GeV}^2)\right $	0.16	0.17	0.17	0.32	0.34	0.35	0.36	0.66	0.70

today: Beam Spin Sum and Diff of DVCS - HallA @12GeV

Fit for constant (x_B, t) using different beam energies (but also different Q²) of

- ▶ 24 CFF $(H, \tilde{H}, E, \tilde{E}) \otimes (\Re e, \Im m) \otimes (++, 0+, -+)$
- ▶ or only 8 CFF $(H, \tilde{H}, E, \tilde{E},) \otimes (\Re e, \Im m) \otimes (++)$

→Importance of considering all CFFs when extracting helicity-conserving CFFs

Experimental Setup at Jlab - CLAS

Experimental Setup at Jlab - CLAS

(Color online) The kinematic coverage and binning as a function of Q 2 and x B. The accepted region (yellow online) is determined by the following cuts: W > 2 GeV, E > 0.8 GeV, 21 • $< \theta < 45 \cdot$. W is the $\gamma * p$ center-of-mass energy, E is the scattered electron energy, and θ is the electron's polar angle in the laboratory frame. The dotted grid represents the kinematic regions for which the cross sections are calculated and presented.

21 bins in (x_B, Q^2) or 110 bins $(x_B, Q^2 t)$ 3 months data taken in 2005

2005-2015: Beam Spin Sum and Diff of DVCS - CLAS

21 bins in (x_B, Q^2) or 110 bins $(x_B, Q^2 t)$ 3 months data taken in 2005 Girod et al. PRL100 (2008) 162002, Jo et al. PRL115, 212003 (2015)

KM10a – – – **(KM10**) Kumericki, Mueller, NPB (2010) 841 Flexible parametrization of the GPDs based on both a Mellin-Barnes representation and dispersion integral which entangle skewness and t dependences **Global fit on the world data ranging from H1, ZEUS to HERMES, JLab** ₩ e p → e γ p

models:

VGG Vanderhaeghen, Guichon, Guidal PRL80(1998),PRD60(1999), PPNP47(2001), PRD72(2005) 1rst model of GPDs improved regularly

KMS12 Kroll, Moutarde, Sabatié, EPJC73 (2013) using the GK model Goloskokov, Kroll, EPJC42,50,53,59,65,74 for GPD adjusted on the hard exclusive meson production at small x_B "universality" of GPDs

nucleon tomography in the valence domain

DVCS at higher beam energy 160 GeV

DVCS at higher beam energy 160 GeV

 π° background contribution from SIDIS (LEPTO) + exclusive production (HEPGEN)

DVCS above the **BH**contrib.

2012-2022: DVCS Beam Charge & Spin <u>Sum</u> - COMPASS

nucleon tomography in the sea quark domain at COMPASS

direct extraction of physical observable

nucleon tomography in the sea quark domain at COMPASS

- \succ π^0 contamination with different thresholds
- binning with 3 variables (t,Q^2,v) or 4 variables (t,ϕ,Q^2,v)

2016+2017 expected statistics = $10 \times \text{Ref}$ لی₂ 6.0 **COMPASS** preliminary ⁴0.5 ²q 2016 **Prelim** 0.4 2012 0.3 COMPASS: $<Q^2> = 1.8 (GeV/c)^2$ This Analysis 0.2 COMPASS: $<Q^2> = 1.8 (GeV/c)^2$ Phys. Lett. B793 (2019) 188 $<Q^2> = 3.2 (GeV/c)^2$ JHEP 0905 (2009) 108 $<Q^{2}> = 4.0 (GeV/c)^{2}$ Eur. Phys. C44 (2005) 1 0.1 $<Q^{2}> = 8.0 (GeV/c)^{2}$ $\langle Q^2 \rangle = 10. (GeV/c)^2$ Phys. Lett. B681 (2009) 391 10⁻¹ x_{Bi} / 2 10⁻² $<Q^2> = 1.8 (GeV/c)^2$ $<Q^2> = 10. (GeV/c)^2$ KM15 model from Kumericki & Mueller $<Q^{2}> = 1.8 (GeV/c)^{2}$ from Goloskokov & Kroll $<Q^{2}> = 10. (GeV/c)^{2}$

nucleon tomography in the gluon domain at HERA

ImH and ReH using global fits of the world data

Global Fit KM15 Compared to GK Model GK

Global Fits using PARTONS framework Compared to GK and VGG Models

Kumericki, Mueller, NPB (2010) 841, private com.

Moutarde, Sznajder, Wagner, Eur. Phys. J. C 79 (2019) 7, 614

ReH is still poorly known (importance of DVCS with μ^{\pm} at COMPASS, e[±] at JLab or TCS at JLab and EIC)

Other GPDs

Vector mesons ρ , ω or ϕ or J/ψ ...

H and E

Pseudo Scalar Mesons π , η ...

 $\blacksquare \qquad \qquad \widetilde{\mathsf{H}} \text{ and } \widetilde{\mathsf{E}}$

Mesons are also sensitive to chiral-odd GPDs

Using of a "neutron" target to get flavor decomposition and insight to E

in the forward limit $(\xi = 0, t = 0) \int_{-1}^{+1} dx E^{q}(x) = \kappa^{q}$

 $J_{\rm u}$ should be large and $J_{\rm d}$ small

2010-2020 : DVCS off "neutron" in Hall A @ 6 GeV

nature physics

$\ell d \rightarrow \ell n \gamma (p)$

Benali et al., Nature Physics 16, 191-198 (2020)

From LH₂ target, Fermi smearing added

With LH₂ target
$$D(e, e'\gamma)X = d(e, e'\gamma)d + n(e, e'\gamma)n + p(e, e'\gamma)p(e, e'$$

Coherent deuteron + quasi-free neutron + quasi-free proton

2010-2020 : DVCS off "neutron" in Hall A @ 6 GeV

using $\ell n \rightarrow \ell n \gamma$ and $\ell p \rightarrow \ell p \gamma$ fit for each case of 12 CFFs

2 fits: **HT:** 12 CFFs $(H, \tilde{H}, E) \otimes (\Re e, \Im m) \otimes (++, 0+)$ **NLO:** 12 CFFs $(H, \tilde{H}, E) \otimes (\Re e, \Im m) \otimes (++, -+)$

 $\mathcal{A} = F_1 \mathcal{H} + \xi (F_1 + F_2) \widetilde{\mathcal{H}} - t/4m^2 F_2 \mathcal{E}$

f F for \mathcal{H} or $\widetilde{\mathcal{H}}$ or \mathcal{E}

 \mathbf{F}^{q} for quark flavor in the proton $\mathbf{F}^{u} = \mathbf{F}_{p}^{u} = \mathbf{F}_{n}^{d}$

u-d flavor separation of CFF contributions (s <<)

$$\frac{\mathcal{F}^{u}}{\mathcal{F}^{d}} = 9/15 \left[4 \frac{\mathcal{F}_{proton}}{\mathcal{F}_{neutron}} - \frac{\mathcal{F}_{neutron}}{\mathcal{F}_{proton}} \right]$$

Solid line: Reggeized diquark model (Golstein, Luiti et al.)

2010-2020 : DVCS off the neutron in Hall A @ 6 GeV

next future: Beam Spin Sum and Diff @ JLab12

next future: GPD E @ JLab12 with CLAS12

next future: GPD E @ JLab12 with CLAS12

Exp E12-11-003: DVCS off the neutron with LD₂

Other paths to get GPDs with Compton Scattering

Study of protons and neutrons

Time Like Compton Scattering Result with CLAS12: Chatagnon et al. PRL127, 262501 (2021)

Double DVCS Projects explored with the high luminosity of JLab12 (in Hall-C or with CLAS12 and Solid)

Study of nuclei

(HERMES, JLab6, JLab12)

First measurement on He4: Hattawy et al., PRL 119 (2017) Spin 0 target, one chiral even GPD

Off bound protons: Hattawy et al., PRL 123(**2019**) Ratio of the bound to the free proton at ϕ =90°

exclusive J/ψ production at EIC

mapping in the transverse plane Impact parameter distribution

$$q_f(x,b_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-i\Delta_{\perp} \cdot b_{\perp}} H_f(x,0,-\Delta_{\perp}^2)$$

$$\langle b_{\perp}^2 \rangle^q(x) = -4 \frac{\partial}{\partial \Delta_{\perp}^2} \ln H_{-}^q(x, 0, -\Delta_{\perp}^2) \Big|_{\Delta_{\perp}=0}$$

Exclusive J/\psi production

Transverse distance of the gluon from the center of the proton in femtometers

Past and future experiments for DVCS $\ell p \rightarrow \ell' p' \gamma$

