

Lesson III: Hadronic scale, experimental point of view: **From high-energy lepton scattering to nucleon pressure** After the introduction of the different types of experiments to reveal the nucleon structure, the focus is on Exclusive Reactions related to GPDs:

- Correlation between position and momentum of partons
- Angular momentum and nucleon pressure

Nicole d'Hose (Irfu, CEA Université Paris-Saclay)

Since the proton is composed of quarks confined by gluons, an equivalent pressure which acts on the quarks can be defined. This allows calculation of their distribution as a function of distance from the momentum centre using **Deeply Virtual Compton Scattering**.

Deeply virtual Compton scattering (DVCS)

The GPDs depend on the following variables:

- x: average ζ: transferred -
- quark longitudinal momentum fraction
- t: proton momentum transfer squared related to b_⊥ via Fourier transform
 Q²: virtuality of the virtual photon

D. Mueller et al, Fortsch. Phys. 42 (1994)
X.D. Ji, PRL 78 (1997), PRD 55 (1997)
A. V. Radyushkin, PLB 385 (1996), PRD 56 (1997)

DVCS: $\ell p \rightarrow \ell' p' \gamma$ the golden channel because it interferes with the Bethe-Heitler process

also meson production $\ell p \rightarrow \ell' p' \pi, \rho, \omega \text{ or } \phi \text{ or } J/\psi...$

The variables measured in the experiment: $E_{\ell}, Q^2, x_B \sim 2\xi / (1+\xi),$ $t (or \theta_{\gamma^*\gamma}) and \phi (\ell \ell' plane/\gamma\gamma^* plane)$

Deeply virtual Compton scattering (DVCS)

The amplitude DVCS at LT & LO in α_s (GPD **H**): **Real part Imaginary part** $\mathcal{H} = \int_{t, \xi \text{ fixed}}^{t+1} dx \ \frac{H(x,\xi,t)}{x-\xi+i\varepsilon} = \mathcal{P} \int_{-1}^{t+1} dx \ \frac{H(x,\xi,t)}{x-\xi} - i \ \pi \ H(x = \pm \xi, \xi, t)$

In an experiment we measure Compton Form Factor ${\cal H}$

$$\mathcal{ReH}(\xi,t) = \pi^{-1} \int_0^1 dx \; \frac{2x \; Im \mathcal{H}(x,t)}{x^2 - \xi^2} + \Delta(t)$$

Deeply virtual Compton scattering (DVCS)

M. Burkardt, PRD66(2002)

GPDs and Energy-Momentum Tensor and Confinement

The pion field provides the confining pressure at the proton periphery (pions are the Goldstone bosons of the spontaneous chiral symmetry breaking) 6

Confinement and Pressure

Since the proton is composed of quarks confined by gluons, an equivalent pressure which acts on the quarks can be defined. This allows calculation of their distribution as a function of distance from the centre using **Deeply Virtual Compton Scattering.** It has been shown in a first publication in Nature that the pressure is maximum at the centre, about 10³⁵ Pa, which is greater than the pressure inside a neutron star. It is **positive (repulsive)** to a distance of about 0.6 fm, **negative (attractive, confining)** at greater distances, and very weak beyond about 2 fm.

LETTER

https://doi.org/10.1038/s41586-018-0060-a

The pressure distribution inside the proton

16 May 2018

1eV = 1.6 10^{-19} Nm 1 Pa=N/m² Near the center at r=0.05fm r²p=10⁻³ GeV fm⁻¹ \rightarrow p=10⁻³ · 1.6 $10^{-19} · 10^9 · (10^{15})^3 / (0.05)^2 = 0.640 10^{35}$ Pa Repulsive pressure near center p(r=0) ~ 10³⁵ Pa

Atmospheric pressure: 10^5 Pa Pressure in the center of neutron stars ~ 10^{35} Pa

Confinement and Pressure

Since the proton is composed of quarks confined by gluons, an equivalent pressure which acts on the quarks can be defined. This allows calculation of their distribution as a function of distance from the centre using **Deeply Virtual Compton Scattering.** It has been shown in a first publication in Nature that the pressure is maximum at the centre, about 10³⁵ Pa, which is greater than the pressure inside a neutron star. It is positive (repulsive) to a radial distance of about 0.6 fm, negative (attractive) at greater distances, and very weak beyond about 2 fm.

This work was revisited after. The experimental method (direct extraction of physical observable) is not questioned but the evaluation of the incertainties is. With the present set of data the high pressure in the center is also compatible with 0.

H. Moutarde^{1,a}, P. Sznajder^{2,b}, J. Wagner^{2,c}

Confinement and Pressure

Radial pressure distribution in the proton.

The graph shows the pressure distribution r2 p(r) that results from the interactions of the quarks in the proton versus the radial distance r from the centre of the proton. The thick black line corresponds to the pressure extracted from the D-term parameters fitted to published data measured at 6 GeV. The corresponding estimated uncertainties are displayed as the light-green shaded area shown. The blue area represents the uncertainties from all the data that were available before the 6-GeV experiment, and the <u>red shaded area shows projected results</u> from future experiments at 12 GeV that will be performed with the upgraded experimental apparatus. Uncertainties represent one standard deviation.

So we will investigate the experimental result as for example a referee will do it

The experimental method: **Output Description**

ēp → eγp

Jlab 6 GeV With CLAS

2005-2015: Beam **Spin** Sum and Diff of DVCS - CLAS

KM10a – – – **(KM10**) Kumericki, Mueller, NPB (2010) 841 Flexible parametrization of the GPDs based on both a Mellin-Barnes representation and dispersion integral which entangle skewness and t dependences **Global fit on the world data ranging from H1, ZEUS to HERMES, JLab** ēp → eγp

models:

VGG Vanderhaeghen, Guichon, Guidal PRL80(1998),PRD60(1999), PPNP47(2001), PRD72(2005) 1rst model of GPDs improved regularly

KMS12 Kroll, Moutarde, Sabatié, EPJC73 (2013) using the GK model Goloskokov, Kroll, EPJC42,50,53,59,65,74 for GPD adjusted on the hard exclusive meson production at small x_B "universality" of GPDs

2005-2015: Beam **Spin** Sum and Diff of DVCS - CLAS

21 bins in (x_B, Q^2) or 110 bins $(x_B, Q^2 t)$ 3 months data taken in 2005 Girod et al. PRL100 (2008) 162002, Jo et al. PRL115, 212003 (2015) $\overleftarrow{e} p \rightarrow e \gamma p$

- > The Beam Spin Difference presents a sin ϕ evolution sensitive to Im \mathcal{H}
- > The Beam Spin Sum is sensitive to DVCS2 or interference term or **Re** \mathcal{H} for ϕ around π where the statistics is weaker
- \blacktriangleright The statistics \checkmark when $x_{\rm B} \sim 2\xi$ \checkmark

The experimental method: 2 Im \mathcal{H} **and Re** \mathcal{H} **from local fits**

In each (xb,t) bins extraction of **Im***H* and **Re***H* according the formalism of Belitski, Mueller, Kirchner (Lecture II)

as HallA has done recently and carefully

today: Beam Spin Sum and Diff of DVCS - HallA @12GeV

E12-06-114 Hall-A experiment in 2014-2016 with magnetic spectrometer Georges et al., PRL128 (2022) 252002

Measurements for **3 high x_B=0.36, 0.48, 0.60** at 2 or 3 or 4 high Q² (or E_{beam}) in 3 or 5 bins in t in 24 bins in φ .

Fit for constant (xB, t) using different beam energies (and Q²) to separate DVCS², Interf. and BH Formalism: Braun-Manashov-Müller-Pirnay, PRD 89, 074022 (2014)

Prediction:

KM15: global fit of the world data K. Kumericki and D. Mueller, EPJ Web Conf. 112 (2016) 01012

Setting	Kin-36-1	Kin-36-2	Kin-36-3	Kin-48-1	Kin-48-2	Kin-48-3	Kin-48-4	Kin-60-1	Kin-60-3
x_B	0.36				0.4	0.60			
E_b (GeV)	7.38	8.52	10.59	4.49	8.85	8.85	10.99	8.52	10.59
$Q^2 (\text{GeV}^2)$	3.20	3.60	4.47	2.70	4.37	5.33	6.90	5.54	8.40
E_{γ} (GeV)	4.7	5.2	6.5	2.8	4.7	5.7	7.5	4.6	7.1
$\left -t_{min} \; (\text{GeV}^2)\right $	0.16	0.17	0.17	0.32	0.34	0.35	0.36	0.66	0.70

today: Beam Spin Sum and Diff of DVCS - HallA @12GeV

Fit for constant (x_B, t) using different beam energies (but also different Q²) of

- ▶ 24 CFF $(H, \tilde{H}, E, \tilde{E}) \otimes (\Re e, \Im m) \otimes (++, 0+, -+)$
- ▶ or only 8 CFF $(H, \tilde{H}, E, \tilde{E},) \otimes (\Re e, \Im m) \otimes (++)$

→Importance of considering all CFFs when extracting helicity-conserving CFFs

today: Beam Spin Sum and Diff of DVCS - HallA @12GeV

Fit for constant (x_B, t) using different beam energies (but also different Q²) of

- ▶ 24 CFF $(H, \tilde{H}, E, \tilde{E}) \otimes (\Re e, \Im m) \otimes (++, 0+, -+)$
- ▶ or only 8 CFF $(H, \tilde{H}, E, \tilde{E},) \otimes (\Re e, \Im m) \otimes (++)$

→Importance of considering all CFFs when extracting helicity-conserving CFFs

What do we learn?

- > The Beam Spin Difference (or Asymmetry) presents a sin ϕ evolution sensitive to **Im** \mathcal{H}
- > The Beam Spin Sum is sensitive to DVCS2 or interference term or **Re** \mathcal{H} only in the ϕ domain around π where the statistics is weaker
- \succ The statistics \searrow when $x_{\rm B} \sim 2\xi$ \nearrow

> Hall A has shown:

if Im*H* is relatively independent of HT and NLO this is not at all the case for **Re***H*

The experimental method: ² ImH and ReH from local fits

In each (x_B,t) bin ■ extraction of ImH and ReH according the formalism of Belitski, Mueller, Kirchner (Lecture II)

No good statistics for **Re** \mathcal{H} determination at large |t| and small x_B

■ Jlab CLAS 6 GeV

The Real and Imaginary parts of Compton FF H(ξ ,t) for different ξ and t values, resulting from the local fit to the **BSA** and **cross section data**.

> Jlab HallA 12 GeV In the domain of overlap

Important check as if **Im** \mathcal{H} is relatively independent of HT and NLO this is not the case for **Re** \mathcal{H}

the Jlab 6 GeV CLAS data

21 bins in (x_B, Q^2) or 110 bins $(x_B, Q^2 t)$ 3 months data taken in 2005

Jlab 6 GeV With CLAS

ēp → eγp

The experimental method: ⁽³⁾ ImH and ReH from global fits

Global fit of ImH using the parametrisation from Kumericki and Mueller NPB841, 1-58, 2010

$$\operatorname{Im}\mathscr{H}(x, t) = \frac{nr}{1+x} \left(\frac{2x}{1+x}\right)^{-\alpha(t)} \left(\frac{1-x}{1+x}\right)^{b} \frac{1}{(1-\frac{1-x}{1+x}\frac{t}{M^{2}})^{p}}$$
 not completely valid at high t
Then ReH recontructed applying the DVCS dispersion relation with $\Delta(t)$ subtraction constant

$$\operatorname{Re}\mathscr{H}(\xi, t) = \Delta(t) + \frac{1}{\pi} \operatorname{P.V.} \int dx \left(\frac{1}{\xi-x} - \frac{1}{\xi+x}\right) \operatorname{Im}\mathscr{H}(x, t)$$

$$\int_{0}^{W+v \xi \text{ from of Rat} t= 0.11 \text{ GeV}^{*}} \int_{0}^{W+v \xi \text{ from of Rat} t= 0.11 \text{ GeV}^{*}} \int_{0}^{W+v \xi \text{ from of Rat} t= 0.11 \text{ GeV}^{*}} \int_{0}^{W+v \xi \text{ from of Rat} t= 0.20 \text{ GeV}^{*}} \int_{0}^{W+v \xi \text{ from of Rat} t= 0.21 \text{ GeV}^{*}} \int_{0}^{W+v \xi \text{ from of Rat} t= 0.21 \text{ GeV}^{*}} \int_{0}^{W+v \xi \text{ from of Rat} t= 0.21 \text{ GeV}^{*}} \int_{0}^{W+v \xi \text{ from of Rat} t= 0.20 \text{ GeV}^{*}} \int_{0}^{W+v \xi \text{ from of Rat} t= 0.20 \text{ GeV}^{*}} \int_{0}^{W+v \xi \text{ from of Rat} t= 0.20 \text{ GeV}^{*}} \int_{0}^{W+v \xi \text{ from of Rat} t= 0.21 \text{ GeV}^{*}} \int_{0}^{W+v \xi \text{ from of Rat} t= 0.20 \text{ GeV}^{*}} \int_{0}^{W+v \xi \text{$$

The experimental method: ⁽³⁾ ImH and ReH from global fits

Jlab CLAS 6 GeV

Samples of Beam Spin Asymmetry

Thick grey curve: global fit of ImH Thin light grey curves: errors on parametrization parameters within one standard deviation

Samples of differential cross sections with fits

Thin light grey curves: local fit of ReH using the DR with $\Delta(t)$ at fixed t and variation within one standard deviation Thick grey curve: global fit of ReH using the DR with a parametrization of $\Delta(t) = \Delta(0) \cdot (1-t/M^2)^{-\alpha}$

4 Δ , D, d₁^q and Pressure distribution in the proton

 Δ (t) subtraction constant of the DVCS dispersion relation:

$$\operatorname{Re}\mathscr{H}(\xi, t) = \Delta(t) + \frac{1}{\pi} \operatorname{P.V.} \int_{0}^{t} dx \left(\frac{1}{\xi - x} - \frac{1}{\xi + x} \right) \operatorname{Im}\mathscr{H}(x, t)$$

Relation with D(z,t), the **D-term** of the GPD

& with $d_1^{q}(t)$, the proton gravitational FF (the spherical Bessel transform of the pressure):

$$\Delta(t) = 2\sum_{q} Q_q^2 \int_{-1}^{1} \mathrm{d}z \underbrace{\mathcal{D}_q(z,t)}_{1-z} = 4\sum_{q} Q_q^2 \underbrace{d_1^q(t)}_{1} + \ldots, q = u, d, \ldots$$

Q is the quark charge, considering only u and d quarks And with the assumption $d_1^u = d_1^d = d_1^Q/2$

$$d_{1}^{Q}\left(t
ight)=rac{9}{10}\Delta\left(t
ight)$$

The spherical Bessel transform of the pressure :

M.V. Polyakov, Phys. Lett. B555 (2003) 57 M.V. Polyakov, P. Schweitzer,

Int.J.Mod.Phys. A33 (2018)

 $-1 < z = \frac{x}{\xi} < 1$

4 Λ , D, d₁^q and Pressure distribution in the proton

$d_1^{Q}(0) < 0$

This is a critical result, required for dynamical stability of the proton deeply rooted in chiral symmetry breaking.

 $d_1^{Q}(0) = -1.47 \pm 0.10 \pm 0.22$ $M^2 = 1.06 \pm 0.10 \pm 0.15$ $\alpha = 2.76 \pm 0.25 \pm 0.50$

4 Δ , D, d₁^q and Pressure distribution in the proton

Comparison of d₁^Q (t) with theories M. Polyakov, P. Schweitzer, Int.J.Mod.Phys. A33 (2018)

Global properties of the Proton

	$Q_{\rm prot}$	=	$1.602176487(40) \times 10^{-19}$ C
Em:	μ_{prot}	=	$2.792847356(23)\mu_N$
Maalu	<u></u> <i>g</i> _A	=	1.2694(28)
Gravity:	g_p	=	8.06(0.55)
	<i>M</i> _{prot}	=	938.272013(23) MeV/c^2
Gravity.	J	=	$\frac{1}{2}$
	d ₁ ^Q (0) =	-1.47 (10) (22)

Pressure distribution and comparison to the χQSM model

In the chiral quark-soliton model (χ QSM) the proton is modeled as a chiral soliton with the constituent quarks bound by a self-consistent pion field. The pion field provides the confining pressure at the proton periphery (pions are the Goldstone bosons of the spontaneous chiral symmetry breaking)

The $d_1^{Q}(0) < 0$ is rooted in the spontaneous chiral symmetry breaking (χ SB). In the χ QSM the pion field provides the confining pressure at the proton's periphery.

BUT Problem of incertainties

By Kumericki: Fits à la Burkert, by applying NNet to the CLAS DVCS data, as well as by the fit of KM09a) with zero subtraction constant. Coloured bands for uncertainty of one standard deviation.

V. Burkert et al., Nature 557, 396-399 (2018)

acurate $\Delta(t)$ to determine D-term and pressure within some assumptions

$$\Delta(t=0) = -1.63 \pm 0.11 \pm 0.24$$
 $d_1^Q = 9/10 \Delta(t)$

This is a critical result, required for dynamical stability of the proton, deeply rooted in chiral symmetry breaking.

however improvement of uncertainties Using flexible parametrization by neural networks

K. Kumericki, Nature 570, E1–E2 (2019)

 $\Delta(t) = 0.78 \pm 1.5$ (statistical uncertainty)

with almost no dependence on *t*

 → D-term and pressure consistent with 0
 → waiting for more data sensitive to ReH (importance of DVCS with µ[±] at COMPASS, e[±] at JLab or TCS at JLab and EIC)

ImH and **ReH** using global fits of the world data

Global Fit KM15 Compared to GK Model GK

Global Fits using PARTONS framework Compared to GK and VGG Models

Kumericki, Mueller, NPB (2010) 841, private com.

ReH is still poorly known (importance of DVCS with μ^{\pm} at COMPASS, e^{\pm} at JLab or TCS at JLab and EIC)

Incertainties on the subtraction term C_H(t,Q²)

Incertainties on the subtraction term C_H(t,Q²)

The link between the distribution of pressure forces in the proton and the DVCS subtraction constant is well-defined.

DVCS data do not allow yet a statistically significant extraction of these pressure forces.

We need more precise data and an extension of the covered kinematic domain. We need to reach small t values

→ Role of the future experiments at JLab, CERN, EIC and EIcC facilities.

next future: DVCS with Beam Spin Sum and Diff @ JLab12

Projection for Jlab 12 GeV

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

Future: Physics Program at EIC and Detector Projet

Future: Physics Program at EIC and Detector Projet

DOE annoncement: January 9, 2020 CD0 December 19, 2019 Site of EIC: Brookhaven National Laboratory

BNL and Jlab realize EIC as partners **CD1** June 28, **2021**

CD2 Approval - Early FY24

CD3 Start of construction - Early FY25

CD4A early finish, collisions begin for machine tuning Detector 1 needs to be ready to give feedback. – FY31

CD4 Machine delivers for physics Detector 1 should be fully functional to start physics –FY33

(.GOV	SCIENCE & INNOVATION		ENERGY ECONOMY			SECURITY & SAFETY		SAVE ENERGY, MONEY	
		Depa	rtment o	fEnerg	y				
U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility									
JANUARY 9, 2020									
		∎ f	y	in	P				
Home » U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility									

WASHINGTON, D.C. – Today, the **U.S. Department of Energy (DOE)** announced the selection of Brookhaven National Laboratory in Upton, NY, as the site for a planned major new nuclear physics research facility.

EIC physics at-a-glance

Understanding the glue that binds as all

How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon? How do the nucleon properties (mass & spin) emerge from their interactions?

How do color-charged quarks and gluons and colorless jets, interact with a nuclear medium? How do the confined hadronic states emerge from these quarks and gluons? How do the quark-gluon interactions create nuclear binding?

How does a dense nuclear environment affect the quarks and gluons, their correlations, and their interactions? What happens to the gluon density in nuclei? Does it saturate at high energy, giving rise to a gluonic matter with universal properties in all nuclei, even the proton?

EIC project at BNL

Key measurements for gluon imaging with EIC

	Deliverables	Observables	What we learn	Requirements	
Change 2	GPDs of	DVCS and $J/\Psi, \rho^0, \phi$	transverse spatial distrib.	$\int dt L \sim 10$ to $100 {\rm fb}^{-1}$;	
Stage 2 Eq=20 GoV/En=250 GoV	sea quarks	production cross section	of sea quarks and gluons;	Roman Pots;	
Le-20 Gevep-250 Gev	and gluons	and polarization	total angular momentum	polarized e^- and p beams;	
		asymmetries	and spin-orbit correlations	wide range of x_B and Q^2 ;	
Stage 1	GPDs of	electroproduction of	dependence on	range of beam energies;	
Ee=5 GeVEp=100 GeV	valence and	π^+, K and ρ^+, K^*	quark flavor and	e^+ beam	
	sea quarks		polarization	valuable for DVCS	

DVCS, TCS Exclusive production of J/ ψ and Y

3D imaging – gluon distribution from low to high x

exclusive J/w production at EIC

mapping in the transverse plane Impact parameter distribution

$$q_f(x,b_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-i\Delta_{\perp} \cdot b_{\perp}} H_f(x,0,-\Delta_{\perp}^2)$$

$$\langle b_{\perp}^2 \rangle^q(x) = -4 \frac{\partial}{\partial \Delta_{\perp}^2} \ln H_{-}^q(x, 0, -\Delta_{\perp}^2) \Big|_{\Delta_{\perp}=0}$$

Exclusive J/ ψ production: ep \rightarrow ep J/ ψ

Transverse distance of the gluon from the center of the proton in femtometers

exclusive Y production at EIC

mapping in the transverse plane Impact parameter distribution

$$q_f(x,b_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-i\Delta_{\perp} \cdot b_{\perp}} H_f(x,0,-\Delta_{\perp}^2)$$

$$\langle b_{\perp}^2 \rangle^q(x) = -4 \frac{\partial}{\partial \Delta_{\perp}^2} \ln H^q_-(x, 0, -\Delta_{\perp}^2) \Big|_{\Delta_{\perp}=0}.$$

Exclusive Y production: ep \rightarrow ep Y

$$T_V = (Q2 + M_V^2)/(2P \cdot q)$$

Gluon distribution with 100 fb⁻¹

 $89.5 \text{ GeV}^2 < Q^2 + M^2 < 91 \text{ GeV}^2$

Medium energy is the best

Ee=10 GeVEp=100 GeV with one year of $\int L=100 \text{ fb}^{-1}$ L=10³⁴ cm⁻²s⁻¹

Coherent DVCS on ⁴He

Impact of pT threshold for the recoil detection

Quark density profiles for coherent DVCS off ⁴He generated with TOPEG. Extraction based on fit using leading-order formalism and three Roman Pot p_T thresholds: 0.1 (left), 0.2 (centre) and 0.3 GeV (right).

Minimum reach in -t directly affects the uncertainties on the density profiles.

EIC detector requirements

Forward and backward detectors

Total size detector: ~75m Central detector: ~10m Backward electron detection: ~35m Forward hadron spectrometer: ~40m

Auxiliary detectors needed to tag particles with very small scattering angles both in the outgoing lepton and hadron beam direction (B0-Taggers, Off-momentum taggers, Roman Pots, Zero-degree Calorimeter and low Q2tagger).

For low Q² coverage

To capture forward going protons and neutrons and decay product of Δ , Λ

Forward detectors

EIC project: Luminosity VS Center of Mass Energy

EIC project: Luminosity VS Center of Mass Energy

EIC Luminosity VS the other facilities in the world

The ideal experiment for exclusive reaction

High beam energy

ensure hard regime and large kinematic domain **polarized** beam (polarization >70%) availability of **positive** and **negative** leptons variable energy for:

L/T separation for pseudo scalar production ϵ separation for DVCS² and Interf DVCS

H₂, D₂ and nuclear target, Long. Pol., Transv. Pol. Target

High luminosity (10^{33} to 10^{34} cm⁻¹s⁻¹)

small cross section fully differential analysis (x_B , Q^2 , t, ϕ) With 10^{33} cm⁻²s⁻¹, the integrated luminosity achieved with 30 weeks operation is 10 fb⁻¹ **GPD would ask for 100 fb⁻¹ in 1 year** \rightarrow **need of the highest luminosity of 10³⁴ cm⁻²s⁻¹**

Hermetic detectors

ensure exclusivity - careful design of the IP and hadron beam parameters for $0.02 < |t| < 1.6 \text{ GeV}^2$

Compton Scattering at EIC

The violet band is the uncertainty obtained excluding the EIC pseudo-data from the global fit procedure.

DVCS, TCS:

- Consistency of factorization
- > Test of universality
- Better determination of ReH

Reference Detector – Backward/Forward Detectors

High resolution timing technologies

HEATSHIELD

QUAD COIL

ELECTRON BEAM TUBE

(AC)-LGAD

- Detectors can provide <20ps / layer *
- moderate granularity $(500 \times 500 \mu m^2)$ ÷
- AC-coupled variety gives 100% fill factor **
- For far-forward area: ** Roman Pots, Off-momentum detectors, B0-detectors (in combination with high resolution Si-pixels)

 $D^{*+} \rightarrow D^0 \pi_s^+ \rightarrow (K^- \pi^+) \pi_s^+$ $\vec{p}_{\mathbf{N}}$ K^+ π, secondary vertex \vec{s} π_s $\frac{\text{decay length}}{\vec{L}}$ primary vertex \vec{P} beam-spot

$$R(m) = \frac{P_T(GeV)}{0.3 \cdot B(T)}$$

Diffraction events & gluon densities

