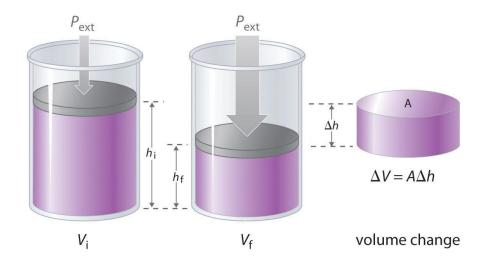
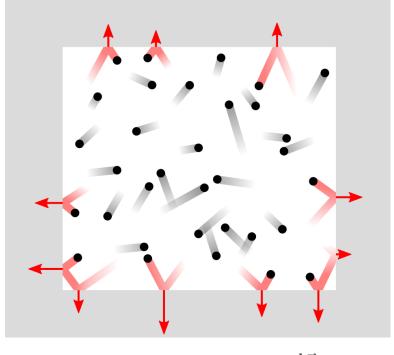


Three communities meet around a common theme: PRESSURE


What is pressure?

Pressure in thermodynamics

For a quasi-static process

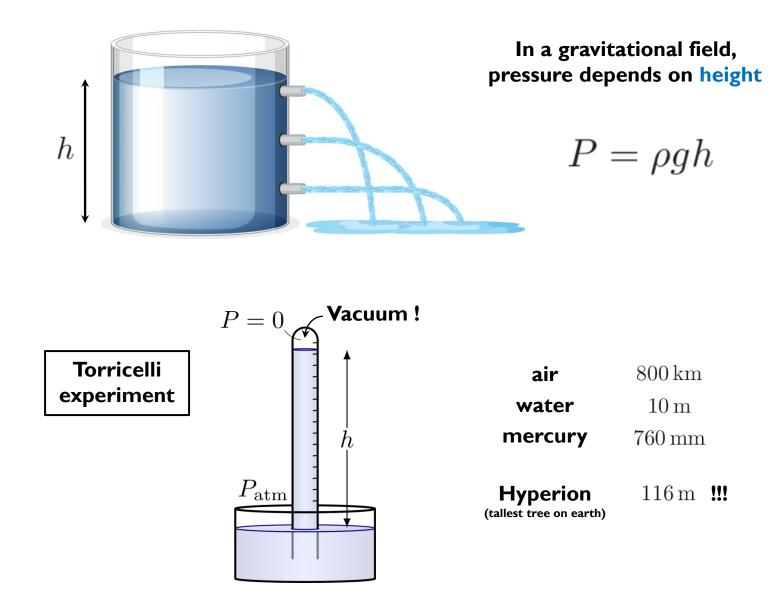

$$\mathrm{d}U = \delta Q - \delta W$$

Work done by the system

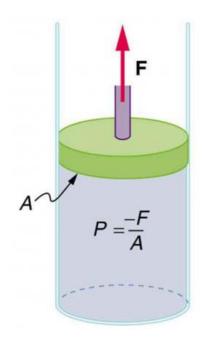
$$\delta W = F \mathrm{d}h = \frac{F}{A} A \mathrm{d}h = P \mathrm{d}V$$

$$\implies P = -\frac{\partial U}{\partial V}\Big|_S$$

Pressure in ideal gas


$$\vec{F}_{\text{part/wall}} = -\vec{F}_{\text{wall/part}} = -\frac{\mathrm{d}\vec{p}_{\text{part}}}{\mathrm{d}t}$$

Non-interacting point particles in a container at rest without gravitation

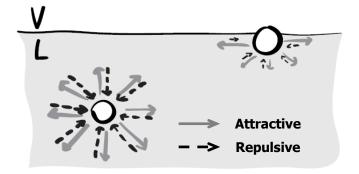

PV = nRT

Macroscopic pressure results from the averaging over a large number of bounces

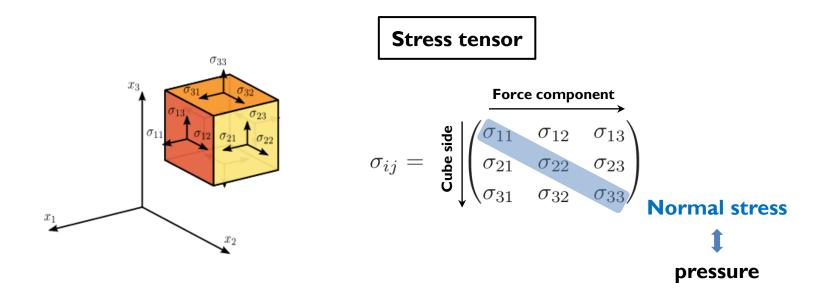
Hydrostatic pressure

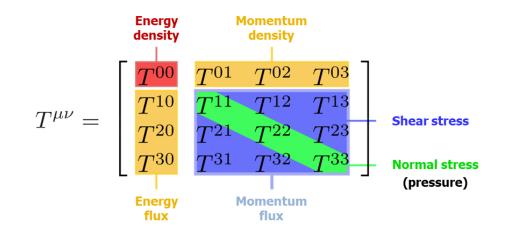
Negative pressure

Negative pressure can be reached by pulling on a piston inside a cylinder filled with liquid


This is possible because there are attractive forces between the molecules

Surface tension is a 2D manifestation of these attractive forces


Anisotropic pressure


[Marchand et al., Am. J. Phys. 79 (2011) 999]

Attractive forces are typically long range, while repulsive forces are short range

Pressure becomes anisotropic in regions where the density changes rapidly

The stress tensor is part of a larger object: the energy-momentum tensor

It plays the role of source for the gravitational field in General Relativity

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \kappa T_{\mu\nu}$$

Spacetime curvature

 $\sim \partial_{\rho} \partial_{\sigma} g_{\alpha\beta}$

Some figures ...

. . .

	Density (kg/m ³)	Pressure (Pa or N/m ²)
Atmosphere at sea level	≈ 1.2	$\approx 10^5$
Center of sun	$\approx 1.6\times 10^5$	$\approx 2.5\times 10^{16}$
Center of neutron star	$\approx 8\times 10^{17}$	$\approx 10^{35}$
Atomic nucleus	$\approx 2.3 \times 10^{17}$	$\approx 3.5 \times 10^{33}$
Center of nucleon	$\approx 3\times 10^{18}$	$\approx 3.7 \times 10^{34}$
PhD student a month before graduation	$\approx 10^3$	$> 10^{42}$

Hadronic physics

What is the sign of pressure anisotropy, and how do quarks and gluons contribute ? What is the mechanical radius of nucleons ?

Nuclear physics

What is the role of pressure in equilibrium and non-equilibrium nuclear matter? What is the incompressibility of nuclear matter ?

Astrophysics

What is the nature of matter at the core of a neutron star? What is the equation of state inside a neutron star?

Degeneracy pressure

Virial theorem

Confinement

Radiation pressure

Gravitational pressure

Thermal vs non-thermal pressure

Stability

Phase transition

Sum rules

Dynamic pressure

Conservation laws

Sound speed

Alternative gravitational theories