NEUTRON STAR OBSERVATIONS AND EXTREME MATTER PROPERTIES

LECTURE 3 - RADIO TIMING, MORE X-RAYS, AND A LOOK INTO THE FUTURE

PROF. ANNA WATTS (UNIVERSITY OF AMSTERDAM) WITH THANKS TO DR THANKFUL CROMARTIE (CORNELL) AND DR SEBASTIEN GUILLOT (IRAP)

FROM NUCLEAR PHYSICS TO TELESCOPE

The Radio Pulsar population

Pulsar Timing

- Account for each rotation
- In addition to basic parameters, models account for ISM dispersion (DM), GR effects, ephemeris, etc.
- Deviations (measurement model) = residuals
- Precision rivals atomic clocks

NANOGrav (Lam 2019)

Courtesy of Thankful Cromartie

Measuring masses

Masses can be measured very precisely for radio pulsars in relativistic binaries (if geometry is favourable), using Post-Keplerian parameters such as Shapiro delay.

B1913+16 "Hulse-Taylor pulsar"

J0737-3039 "Double pulsar"

Weisberg, Nice & Taylor (2010)

Courtesy of Thankful Cromartie

Kramer et al. 2006 via R. Breton

(Nearly) current mass measurements

Watts et al. 2015 (SKA EOS paper), see J.Antoniadis website for updates

Shapiro delay

Courtesy of Thankful Cromartie

Shapiro delay

Courtesy of Thankful Cromartie

Massive NS via Shapiro Delay (J1614-2230)

- Demorest et al. 2010:
 Long-term timing +
 phase-targeted
 campaign 1.97 ± 0.04
 M
- Fonseca et al. 2016:
 1.928 ± 0.017 M_☉
- First ~2 M
 NS rules out softer EoS (kaon condensates, etc.)

Courtesy of Thankful Cromartie

Massive NS via Shapiro Delay (J0740+6620)

- Found in GBNCC survey (Stovall et al. 2014)
- P = 2.9 ms, P_binary = 4.8 days
- NANOGrav MSP since 2014 that showed hint of Shapiro delay (2.0 \pm 0.2 M $_{\odot}$)
- GBT 6-hr supplemental campaign targeted conjunction; saw significant Shapiro delay (yielded 2.18 \pm 0.15 M $_{\odot}$ combined with NANOGrav data)
- Random orbital sampling wasn't enough

Massive NS via Shapiro Delay (J0740+6620)

NANOGrav + targeted campaigns, m~2.14 ± 0.09 solar mass (Cromartie et al. 2020)

Courtesy of Thankful Cromartie

Massive NS via Shapiro Delay (J0740+6620)

- Updated in Fonseca et al. 2021
- Additional 1.5 years of GBT w/NANOGrav at high cadence
- 1.5 years daily CHIME
 observations 2.08 ± 0.07 M
- Used in NICER analysis.

Constraints from spins

Moments of inertia

- Requires highly relativistic binaries.
- For the Double Pulsar, SKA will allow I to be measured to $\pm 10\%$ over next 20 years. This gives R to $\pm 5\%$.
- SKA may lead to discovery of other double neutron star systems with favourable parameters (see Watts et al. 2015)

The future: Square Kilometer Array

X-ray spectral modelling (quiescence)

Example constraints: quiescent NS

Guillot et al. 2013

X-ray spectral modelling (bursts)

Example constraints: bursts

Nattila et al. 2017

Example constraints: combined

Steiner et al. 2013

For review of X-ray spectral techniques see Miller 2013

There remains some discussion points and possible caveats!

- Why only use qLMXBs inglobular clusters?
- What is the <u>composition</u> of the neutron star atmosphere ?
- Is the surface magnetic field really negligible ?
- Is the emission really from the entire surface ?
- What are the effects of assuming slowly rotating neutron stars?

Courtesy of Sebastien Guillot

The future: Athena X-ray Observatory

PPM WITH ACCRETING NS?

PPM FOR ACCRETING NS

The relativistic effects pulse profile modeling exploits are larger for the more rapidly-rotating **accreting** neutron stars.

New astrophysical modeling and analysis challenges!

CAN X-RAY POLARIMETRY HELP?

X-ray polarimetry may help to constrain geometry (e.g. inclination) for accreting neutron stars, especially the pulsars

IXPE, launched December 2021

SPOTS ARE DYNAMIC

SURFACE PATTERN MODELS

Some recent papers: Garcia et al. 2018a,b, 2019, 2020, Bilous et al. 2018, Bilous & Watts 2019, Chambers et al. 2018, 2019, Chambers & Watts 2020, van Baal et al. 2020, Goodwin et al. 2021, Cavecchi & Spitkovsky 2019, Cavecchi & Patruno 2022, Harpole et al. 2021.

Enhanced X-ray Timing and Polarimetry (eXTP) mission

Probe class observatory Ray et al. 2019. Follow @STROBEXAstro on Twitter.