NEUTRON STAR OBSERVATIONS AND EXTREME MATTER PROPERTIES LECTURE 2 THINGS GET NICER NICER + SEXTANT ATT NOOG . DAL AAA+ GSFC PULSU STELLARUM, SCIENTIA ET VIA CAELESTIS

PROF. ANNA WATTS (UNIVERSITY OF AMSTERDAM)

THE NEUTRON STAR INTERIOR

1

2

3

1 OUTER CRUST

NUCLEI ELECTRONS

2 INNER CRUST

NUCLEI ELECTRONS SUPERFLUID NEUTRONS

3 | CORE

SUPERFLUID NEUTRONS SUPERCONDUCTING PROTONS HYPERONS? DECONFINED QUARKS? COLOR SUPERCONDUCTOR?

FROM NUCLEAR PHYSICS TO TELESCOPE

NICER PRE-LAUNCH

Photo: Keith Gendreau (NASA)

NICER LAUNCH

NICER ON THE ISS

PULSE PROFILE MODELING

ROTATION-POWERED MILLISECOND X-RAY PULSARS

THE PULSE PROFILE MODELING PROCESS

PULSE PROFILE DATA

PSR J0030+0451 (Bogdanov et al. 2019)

PSR J0740+6620 (Wolff et al. 2021)

SIMULATION AND INFERENCE CODES

Ray-tracing and inference routines tested by multiple groups using synthetic data (Bogdanov et al. 2019b, 20, 21, Riley PhD thesis 2019)

THE NICER INSTRUMENT RESPONSE

• We include parametrized models of instrument response to reflect calibration uncertainty.

PULSAR SURFACE EMISSION PATTERNS

Surface heating pattern due to return currents a priori poorly constrained.

(Figure courtesy of Kostas Kalapotharakos, see also Harding & Muslimov 2011)

POLAR CAP MODELS

• We use 2-cap models of increasing surface pattern complexity.

PSR J0030+0451 - PREFERRED CONFIGURATION

Riley et al. 2019

PSR J0030+0451 - PREFERRED CONFIGURATION

Riley et al. 2019

NON-DIPOLAR MAGNETIC FIELD

Credit: NASA's Goddard Space Flight Center/Harding, Kalapotharakos, Wadiasingh.

PSR J0030+0451 – MASS AND RADIUS

NICER team J0030 papers: Bogdanov et al. 2019a,b, 2021 (data and supporting analysis); X-PSI (Riley et al. 2019, Raaijmakers et al. 2019, Bilous et al. 2019); Maryland-Illinois (Miller et al. 2019).

THE HIGH MASS PULSAR PSR J0740+6620

PSR J0740+6620: SURFACE MAP

Movie: Sharon Morsink, NASA

PSR J0740+6620 – MASS AND RADIUS

PSR J0740+6620 – MASS AND RADIUS

NICER team J0740 papers: Wolff et al. 2021, Riley et al. 2021, Raaijmakers et al. 2021, Miller et al. 2021.

EQUATION OF STATE INFERENCE

- Start with our inferred mass-radius posteriors note not a directly measured quantity, which introduces some subtleties!
- Select an EOS model (with parameters and priors on those parameters)
- Infer EOS model parameters and central densities -> Inferred EOS
- This then translates into an inferred mass-radius **relation**

EQUATION OF STATE INFERENCE

• EOS model: Pressure expressed as function of density.

Piecewise polytropes

Speed of sound

Hebeler et al. 2010, 13

Greif, Raaijmakers et al. 2019

Central density prior

> Massradius prior

- Prior is typically not uniform in M-R space
- This is mathematical not physical!

- Prior is not uniform in M-R space even before constraints applied.
- This is mathematical not physical!

Raaijmakers et al. 2021 (building on Greif, Raaijmakers et al 19, Raaijmakers et al. 19, 20)

• Radio-derived mass - existence of a 2.1 solar mass neutron star already reduces space a lot (Cromartie et al. 2020, Fonseca et al. 2021).

Raaijmakers et al. 2021 (building on Greif, Raaijmakers et al 19, Raaijmakers et al. 19, 20)

- NICER J0030 mass-radius measurement
- Tidal deformabilities from two binary neutron star mergers,
 GW170817, GW190425 + kilonova from the former

Raaijmakers et al. 2021

- Add NICER x XMM PSR J0740+6620 mass-radius measurement
- Mass-radius band narrowing, although priors/model still important!

Raaijmakers et al. 2021

NEXT STEPS FOR NICER

- 5 new sources coming!
- Updates to alreadypublished results.
- Improved instrument response.
- Better NICER background models.
- Interaction with pulsar astrophysics.

And we are getting ready for the next generation of Pulse Profile Modelling missions!!

UNLOCKING RAPID ROTATORS

The relativistic effects pulse profile modeling exploits are larger for the more rapidly-rotating **accreting** neutron stars.

Next generation telescopes

eXTP (Zhang et al. 2019) STROBE-X (Ray et al. 2019)

New astrophysical modeling and analysis challenges!

SUMMARY

- NICER continues to push the envelope on a completely new technique.
- We have measured the size of two neutron stars, including the highest mass neutron star known.
- We are making maps of tiny stars thousands of light years from Earth.

SUMMARY

- NICER continues to push the envelope on a completely new technique.
- We have measured the size of two neutron stars, including the highest mass neutron star known.
- We are making maps of tiny stars thousands of light years from Earth.

