Binary Neutron Star Mergers and Nuclear Physics

Bruno Giacomazzo

University of Milano-Bicocca (Milan, Italy)

www.brunogiacomazzo.org

Istituto Nazionale di Fisica Nucleare

Plan of the Lectures

- 1. Isolated and Binary Neutron Stars: an Introduction
- 2. Gravitational Wave Emission from Binary Neutron Star Mergers
- 3. Electromagnetic Emission from Binary Neutron Star Mergers
- 4. Observations of Binary Neutron Star Mergers

Compact Objects

Object	Mass (M_{\odot})	Radius (R_{\odot})	ρ (g cm ⁻³)	$C \equiv \frac{MG}{Rc^2}$
Sun	1	1	~1	10-6
White Dwarf	~0.6	~10-2	~10 ⁶	~10-4
Neutron Star	~1.4	~10 ⁻⁵	~10 ¹⁴	~0.2
Black Hole	Any value	$(1-2)\frac{GM}{c^2}$	N/A	0.5-1

$$M_{\odot} \sim 2 \times 10^{33} g$$
 $R_{\odot} \sim 7 \times 10^{10} cm$

H-R Diagram for Stars

Solar Values $M_{\odot} \sim 2 \times 10^{33}$ g $R_{\odot} \sim 7 \times 10^{10}$ cm $L_{\odot} \sim 4 \times 10^{33}$ erg s⁻¹ $T_{\rm eff} \sim 5800$ K

Note: $1 \text{ erg s}^{-1} = 10^{-7} \text{W}$

$$L = 4\pi R^2 \sigma T^4$$

White Dwarfs

1863: first observation (Sirius B)

1926: Fermi-Dirac Statistics

1930-1931: Chandrasekhar solution for White Dwarfs

White Dwarfs

Neutron Stars

1863: first observation (Sirius B)

1926: Fermi-Dirac Statistics

1930-1931: Chandrasekhar solution for White Dwarfs

1930: discovery of neutron

1934: Baade and Zwicky suggest that SN may produce NS

1939: TOV equations (using Fermi-Dirac statistics estimated a maximum mass of ~0.7 M_{\odot})

NS Formation

Stage	Time Scale	Fuel or Product	Ash or product	Temperature (10 ⁹ K)	Density (gm/cm ³)
Hydrogen	11 My	H	He	0.035	5.8
Helium	2.0 My	He	C,O	0.18	1390
Carbon	2000 y	C	Ne,Mg	0.81	2.8 x 10 ⁵
Neon	0.7 y	Ne	O,Mg	1.6	1.2 x 10 ⁷
Oxygen	2.6 y	O,Mg	Si,S,Ar,	1.9	8.8 x 10 ⁶
			Ca		
Silicon	18 d	Si,S,Ar,	Fe,Ni,	3.3	4.8 x 10 ⁷
		Ca	Cr,Ti,		
Iron core	~1 s	Fe,Ni,	Neutron	> 7.1	>7.3 x 10 ⁹
collapse ^a		Cr, Ti,	Star		

Evolution of a 15-solar-mass star

Woosley and Janka 2005

NS Formation

During the Fe core collapse two main processes take place:

- 1. Photodisintegration
- 2. Neutronization

Photodisintegration:

$$\begin{array}{l} \gamma + {}^{56} Fe \rightarrow 13 \, {}^{4}He + 4 \, n \\ \gamma + {}^{4} He \rightarrow 2 \, p + 2 \, n \end{array}$$

Neutronization:

$$e^- + p \rightarrow n + \nu_e$$

Yokoyama & Tsujimoto 2021

This produces a neutron reach nucleus and gives birth to a NS.

NS Binary Formation

Several possible formation channels

Requires two stars with masses between ~8 and ~20 M_{\odot}

System needs to survive both SN explosions and common envelope phase

Similar evolution (different progenitors) will lead to NS-BH and BH-BH binaries

NS: DISCOVERY

First NS discovered as a "pulsar" (radio frequencies) in 1967 by PhD student Jocelyn Bell and her supervisor Antony Hewish.

Photo by Daily Herald Archive/SSPL/Getty Images (23/02/1968)

Pulsars are highly-magnetized rotating neutron stars with spins up to ms.

- Most NSs are observed as pulsars
- We can measure the period and its time derivative
- Not possible to put them in the HR diagram (how do we estimate the radius?)

Neutron Star Structure

NSs are more complicated than a "simple" Fermi gas.

Internal structure of NSs is still unknown (how does matter behave at ~10¹⁵ g cm⁻³?).

NS EOS THEORY: Mass vs radius

Several different EOSs allow for similar NS masses.

Only contemporary measure of Mass and Radius can constraint EOS.